ICHEP-2010 — Paris, July 2010

Highly Pixelated Transparent Devices for Future Vertex Detectors

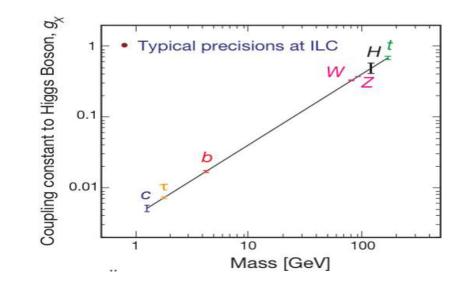
Marc Winter (IPHC-Strasbourg)

(on behalf of the MIMOSA, PLUME, HP-2 & AIDA collaborations) > more information on IPHC Web site: http://www.iphc.cnrs.fr/-CMOS-ILC-.html

CONTENTS

•	Introductory Remarks :					
	\triangleright the trend for	r very light pixe	lated systems	ILC driven R&D		
•	CMOS pixel s	ensors :				
	high-resistiv	vity epitaxy	▷ applications	Advent of vertical integration		
 Other thin pixel technologies currently under development: 				er development:		
	▷ DEPFET	⊳ CCD ba	sed: FPCCD & ISIS f	for ILC > CMOS pixels: APSEL, Ch	ronopix	

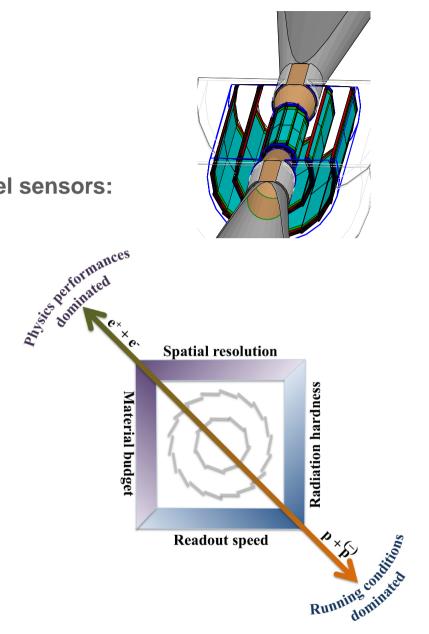
• Summary – Conclusions


The Trend for Ultra-Light Pixelated Devices

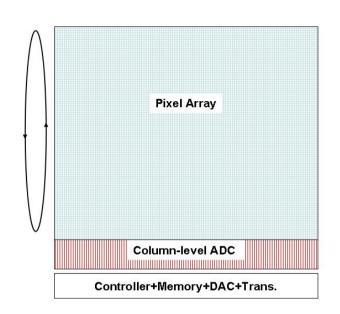
- Trend of subatomic physics experiments for highly granular and thin pixel devices
- Central motivation :
 - * high performance reconstruction of (displaced) charm vertices
 - * high performance multi-jet final state flavour tagging ($t\overline{t}$, $t\overline{t}H$, AH, ...)
- Flagship of this trend : International Linear Collider (ILC) → Letters of Intent delivered in 2009
 → Detector Baseline Document (~ TDR) to be delivered by 2012
 - * also: Heavy Ion experiments, CLIC, LHC upgrades, ..., hadrontherapy, ...
 - \hookrightarrow Figure of merit : $\sigma_{\mathbf{ip}} = \mathbf{a} \oplus \mathbf{b}/\mathbf{p} \cdot \sin^{3/2} \theta$

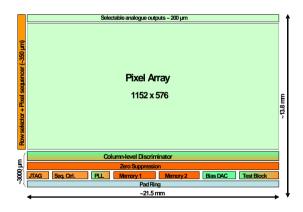
* a governs high momentum

Accelerator	a (μm)	b ($\mu m \cdot GeV$)
LEP	25	70
SLD	8	33
LHC	12	70
RHIC-II	12	19
ILC	< 5	< 10

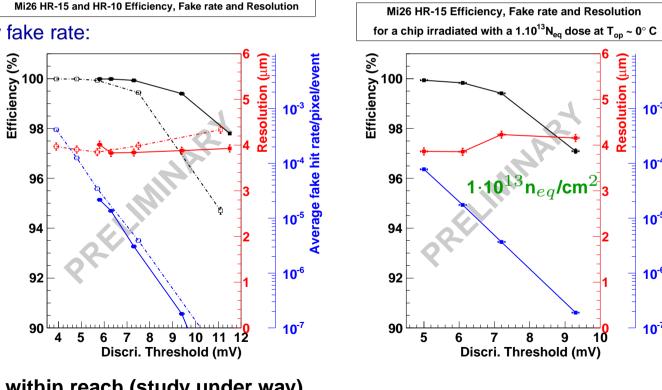

* **b** governs low momentum (\sim 30 % particles < 1 GeV/c)

-2-


On-Going R&D

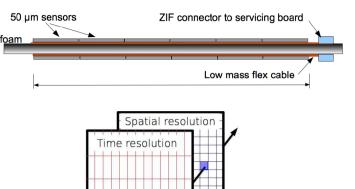

- Several R&D activities since \sim 1 decade
 - * mainly driven by the ILC physics program
 - * originating from various starting points
- Main R&D devt lines on highly granular and thin pixel sensors:
 - * SLD-VTX based on CCDs (a=8, b=33, $t_{r.o.}$ = 200 ms)
 - \rightarrowtail CPCCD, FPCCD, ISIS
 - * X-Ray imager
 - \rightarrowtail DEPFET
 - * industrial CMOS pixel imagers
 - \rightarrowtail MIMOSA, APSEL, CAPS, Chronopix, ...
- Prominent difficulties:
 - * Suppressed material budget (m.s., N_{γ})
 - \Rightarrow constrains pixel technology & services
 - \Rightarrow vigorous upstream R&D
 - * Be as close as possible to the I.P. (short lever arm)
 - \Rightarrow Speed (occupancy !) & radiation tolerance (beam & physics related)

CMOS Pixel Sensors: State of the Art

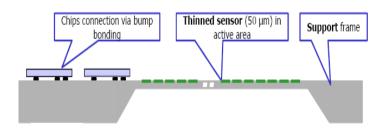

- Prominent features of CMOS pixel sensors:
 - * high granularity \Rightarrow excellent (micronic) spatial resolution
 - st very thin (signal generated in 10-20 μm thin epitaxial layer)
 - st signal processing μ -circuits integrated on sensor substrate
- Sensor organisation:
 - * signal sensing and analog processing in pixel array
 - * mixed and Digital circuitry integrated in chip periphery
 - * read-out in rolling shutter mode
 - (pixels grouped in columns read out in //)
- Main characteristics of MIMOSA sensor equipping EUDET BT:
 - $\ast~$ 0.35 μm process with high-res. epitaxy (coll. with IRFU/Saclay)
 - * column // architecture with in-pixel amplification and end-of-col. discrimination, followed by \emptyset
 - * active area: 1152 columns of 576 pixels (21.2 \times 10.6 mm²)
 - st pitch: 18.4 $\mu m
 ightarrow$ 0.7 million pixels $\Rightarrow \ \sigma_{sp} \lesssim$ 4 μm
 - * T $_{r.o.} \lesssim$ 100 μs (~10⁴ frames/s) \Rightarrow suited to >10⁶ part./cm²/s

High-Resistivity CMOS Pixel Sensors

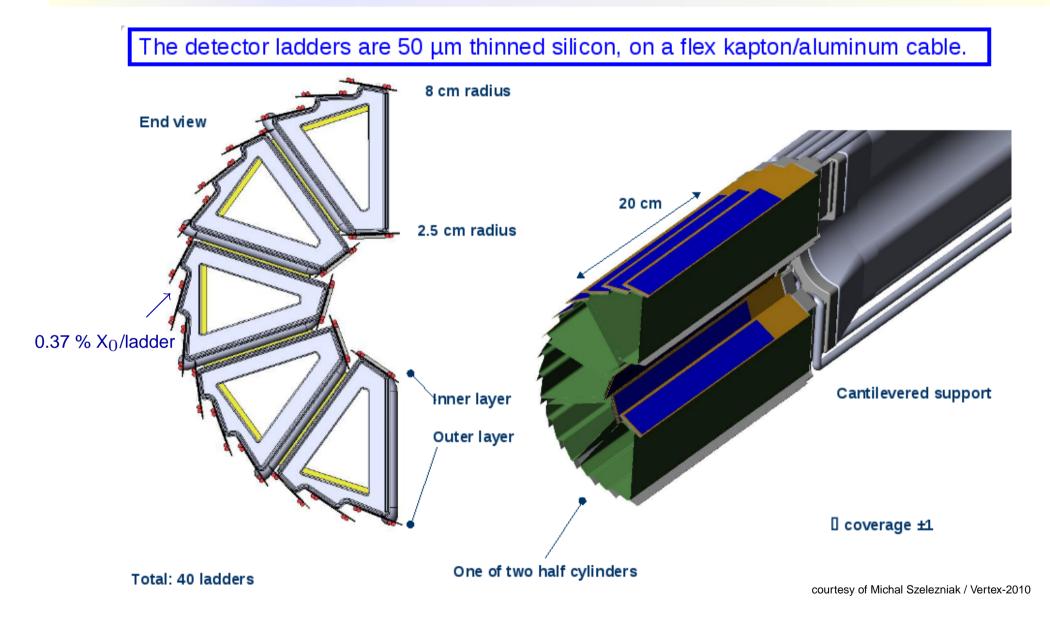
- M.i.p. detection with LOW & HIGH resistivity CMOS sensors combined in a Beam Telescope (BT)
- * 4 EUDET ref. sensors & 2 sensors under test * June 2010 at CERN-SPS (\sim 120 GeV pions) * sensor variants : standard epitaxy (14 μm thick) & high-resistivity epitaxy (10 & 15 μm thick)
- $\frac{Beam}{\pi, 120 \text{ GeV}}$ $\frac{1}{50 \text{ }\mu\text{ }m \text{ thin}}$ $\frac{DUT}{(\text{Device Under Test})}$ $\frac{Beam}{(120 \text{ }\text{GeV})}$ $\frac{1}{50 \text{ }\mu\text{ }m \text{ thin}}$ $\frac{Beam}{(120 \text{ }\text{GeV})}$ $\frac{Beam}{(120 \text{ }\text{$

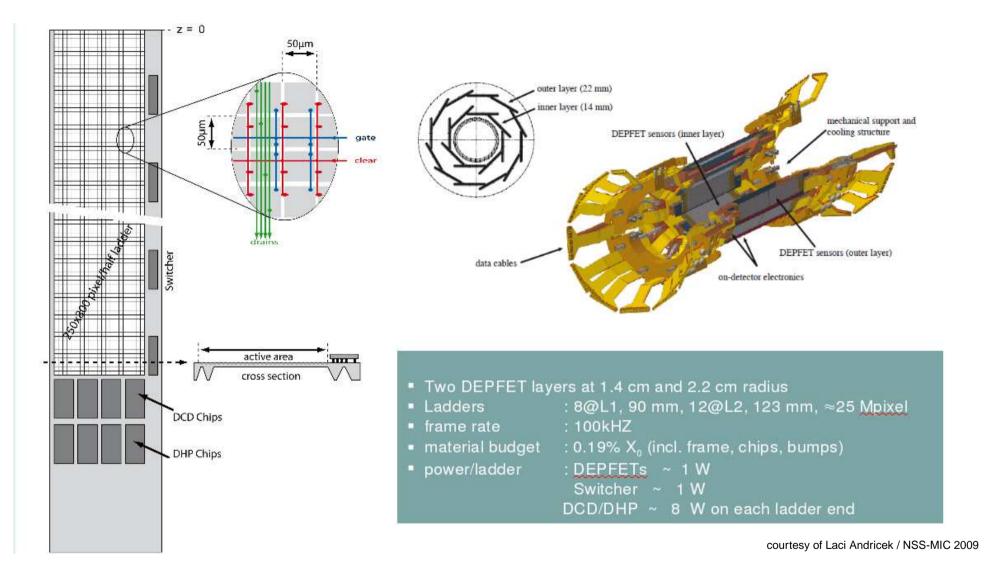


- Preliminary conclusions:
 - st det. eff. \sim 100 % (SNR \sim 40) for very low fake rate:
 - \triangleright plateau until fake rate of few 10⁻⁶
 - st single point resolution \lesssim 4 μm
 - * det.eff. still \sim 100 % after exposure to fluence of 1.10 13 n $_{eq}$ /cm 2
- $\Rightarrow \text{ Excellent detection performances}$ with high-resistivity epitaxial layer despite moderate resistivity (400 $\Omega \cdot cm$) and poor depletion voltage (< 1 V)


ightarrow Tolerance to \gtrsim O(10 14) n_{eq} /cm 2 seems within reach (study under way)

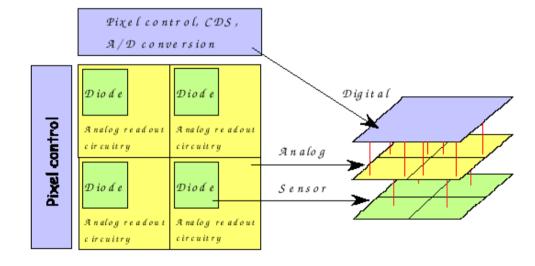
Sensor Integration in Ultra Light Devices


- Double-sided ladders with time stamping :
 - * expected added value of 2-sided ladders: alignment, pointing accuracy (shallow angle), etc.
 - * studied by PLUME coll. (Oxford, Bristol, DESY, IPHC) & AIDA (EU)
 - \rightarrow Pixelated Ladder using Ultra-light Material Embedding
 - * square pixels for single point resolution on beam side
 - * elongated pixels for 4-5 times shorter r.o. time on other side
 - * correlate hits generated by traversing particles
 - st expected total material budget \sim 0.2 0.3 % X_0
- Unsupported & flexible (?) ladders (Hadron Physics 2 / FP-7)
 - * 30 μm thin CMOS sensors mounted on thin cable and embedded in thin polyimide \rightarrow suited to beam pipe ?
 - * expected total material budget \lesssim 0.15 % X₀
- All silicon almost monolithic device (DEPFET):
 - * sgle piece ladders using bulk Si of sensors as mechanical supports
 - * expected total material budget \lesssim 0.2 % X₀ (average)



Application of CMOS sensors to the STAR-PIXEL

ightarrow
igh


Application of DEPFET sensors to the BELLE-2 Vertex Detector

ightarrow
ightarrow
ightarrow 1st vertex detector equipped with DEPFET sensors ightarrow 1st data taking expected in 2014

3DIT to achieve Ultimate CMOS Sensor Performances

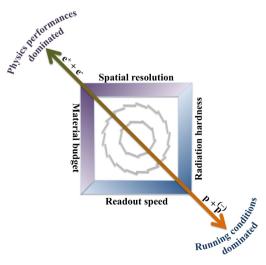
- 3D Integration Techno. allow integrating high density signal processing μ circuits inside small pixels
- 3DIT are expected to be particularly beneficial for CMOS sensors :
 - * combine different fabrication processes * alleviate constraints on transistor type inside pixel
- Split signal collection & processing functionnalities using optimal technology in each tier :
 - * Tier-1 : epitaxy (depleted or not), deep N-well ?
 - * Tier-2 : analog, low I_{leak} , process (nb of ML)
 - * Tier-3 (& -4) : digital VDSM process (nb of ML),
 - \rightarrowtail fast laser (VOCSEL) driver, etc.

• The path to nominal exploitation of CMOS pixel potential :

- st fully depleted 10-20 μm thick epitaxy $\Rightarrow \lesssim$ 5 ns collection time, rad. hardness > Hybrid Pix. Sensors ???
- * FEE with \leq 10 ns time resolution \rightarrow solution for CLIC & HL-LHC specifications ???
- Devt of CAIRN \equiv CMOS Active pixel sensors with vertically Integrated Read-out and Networking functionnalities

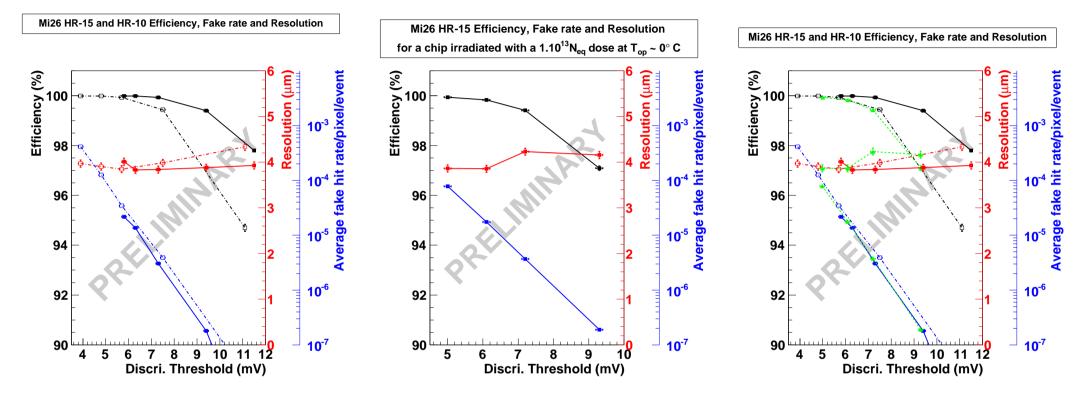
 \hookrightarrow 1st set of 4 chips submitted to foundry in Spring 2009 (within 3DIC)

3D 4 Pixel Layout


SUMMARY – CONCLUSIONS

- ILC drives (since \sim 1 decade) an R&D prog. on novel, highly granular and thin, pixelated devices introducing a new performance standard for vertex detectors:
 - * new pixel technologies: CMOS pixel sensors, DEPFETs, CCD variants,, 3DIT
 - * new ladder concepts: double-sided, unsupported, monolithic

 \hookrightarrow to be assessed in FP-7 project AIDA

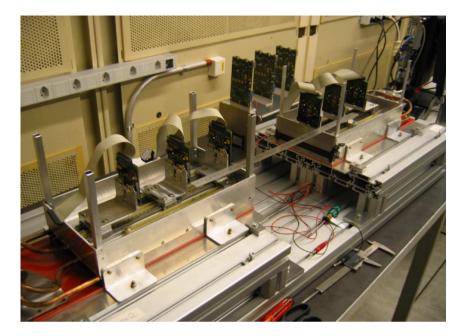

- 2 pixel techno. being prepared for vertex detectors of less demanding expts than those at ILC:
 - * CMOS sensors: numerous BT, STAR ('12/13), CBM ('16), perspectives at CLIC, LHC, etc.
 - * DEPFETs: BELLE-2 ('14)
- CMOS pixel sensors undergo a fast transition in radiation tolerance & speed:
 - * 1st step: high res. epitaxy \Rightarrow SNR \sim 40, rad. tol. $\mapsto \gtrsim$ O(10¹⁴)n_{eq}/cm²
 - * important goal: combine thin HR sensitive tier with 2nd step:
 - CAIRN \equiv 3D sensors combining high-res epitaxy with fast FEE \rightarrow \lesssim 10 ns
 - \hookrightarrow the vertex detector quadrature may be achievable ...

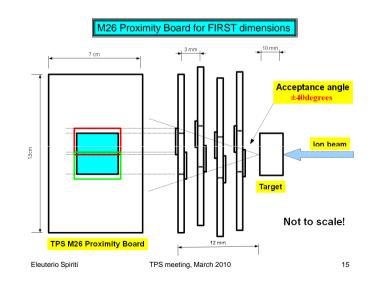
 \hookrightarrow horizon opens up for CLIC & HL-LHC

Back-Up: MIMOSA Sensors Performances

ho
ho
ho Impact of 1·10¹³n_{eq}/cm² on detection performances at T_{op} ~ 0°C

• Preliminary conclusions:


st det. eff. \sim 100 % for very low fake rate: HR-15 \triangleright plateau until fake rate of few 10⁻⁶

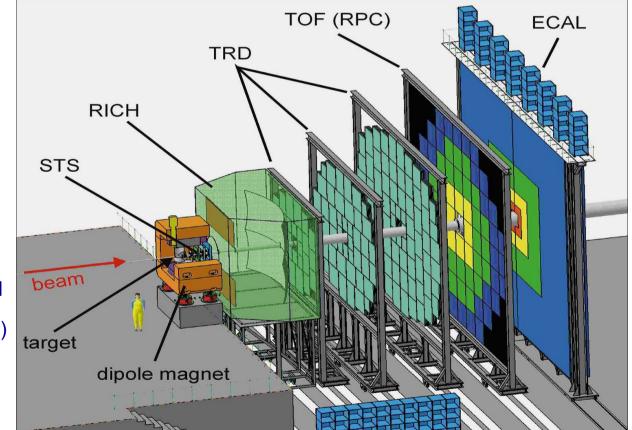

- * single point resolution \lesssim 4 μm
- * det.eff. of HR-15 still \sim 100 % after exposure to $1 \cdot 10^{13} n_{eq}$ /cm²

\Rightarrow Striking evidence for performance improvment with HR epitaxy (in particular 15 μm thick)

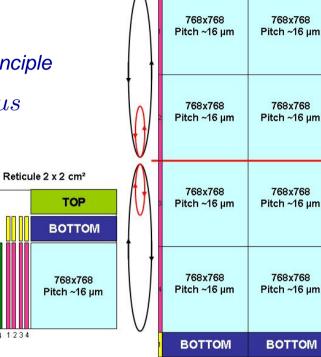
Back-Up : Direct Applications of EUDET Sensor

- Beam telescope of the FP6 project EUDET
 - * 2 arms of 3 planes (plus 1-2 high resolution planes)
 - st M-26 thinned to 50 μm
 - $*~\sigma_{extrapol.} \sim$ 1-2 μm even with e $^-$ (3 GeV, DESY)
 - * frame read-out frequency $O(10^4)$ Hz
 - * running since '07 (demonstrator: analog outputs) at CERN-SPS & DESY (numerous users)

• Spin-offs :


- * Several BT copies : foreseen for detector R&D
- * **BT** for channelling studies
- * **CBM (FAIR) :** MVD demonstrator (2-sided layers) for CBM-MVD (HP-2 project)
- * FIRST (GSI) : VD for hadrontherapy x-sec. measts $\triangleright \triangleright \triangleright$

- Back-Up : Application of DEPFET Sensors to BELLE-2 Experiment


Back-Up : Application of CMOS Sensors to CBM Experiment

- Cold Baryonic Matter (CBM) experiment at FAIR:
 - * Micro-Vertex Detector (MVD) made of 2 of 3 stations located behind fixed target
 - * double-sided stations equipped with CMOS pixel sensors)
 - * operation a negative temperature in vacuum
 - $\,\ast\,\,$ each station accounts for \lesssim 0.5 % X_{0}
 - * sensor architecture close to ILC version
- Most demanding requirements :
 - st ultimately (\sim 2020): 3D sensor \lesssim 10 μs , > 10 14 n $_{eq}$ /cm 2 , \gtrsim 30 MRad
 - * intermediate steps: 2D sensors \lesssim 30-40 μs , > 10 13 n $_{eq}$ /cm 2 , \gtrsim 3 MRad
 - * 1st sensor for SIS-100 (data taking \sim 2016)

Back-Up : Investigating Large Area CMOS Sensors

- **Prototype multireticule sensor for large area stations:**
 - 3072×3072 pixels (16 μm pitch) *
 - \Rightarrow 5×5 cm² sensitive area
 - * requires combining several reticules
 - \Rightarrow stitching process \Rightarrow establish proof of principle
 - double-sided read-out of 1536 rows in 250–300 μs *
 - \Rightarrow Large Area Telescope for AIDA project
 - (EU-FP7 approved recently) * windowing of $\leq 1 \times 5 \text{ cm}^2$ (collim. beam) $\Rightarrow \leq$ 50–60 μs r.o. time

TOP

TOP

768x768

768x768

768x768

768x768

BOTTOM

~5 cm

TOP

768x768

Pitch ~16 um

768x768

Pitch ~16 um

768x768

Pitch ~16 µm

768x768

Pitch ~16 um

BOTTOM

TOP

768x768

Pitch ~16 um

768x768

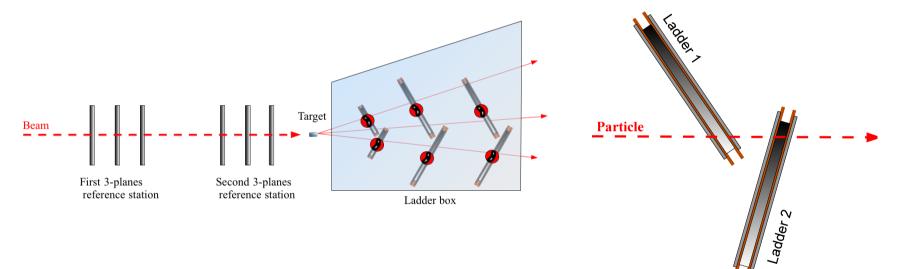
Pitch ~16 um

768x768

Pitch ~16 µm

768x768

Pitch ~16 um

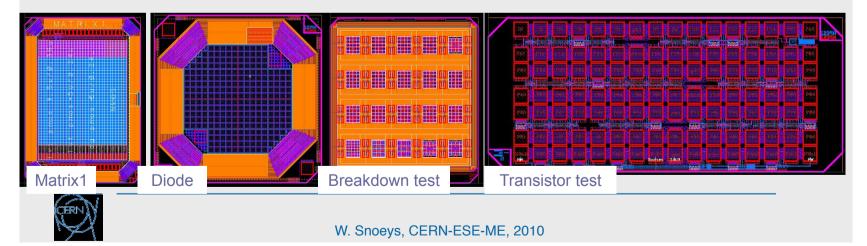

BOTTOM

40

- Submission expected end fo 2011 or early 2012:
 - bonus: avoid paving fw disks with reticule size sensors *
 - \Rightarrow dead zones, material, connectics/complexity
 - synergy with forward disk projects on collider experiments (e.g. EIC project at BNL) *
 - 6 sensors will compose a beam telescope at CERN (AIDA project deliverable) *
 - \triangleright few ns time stamping resolution associated to each hit by TLU (scintillator)

Back-Up: VTX Oriented Infrastructures in AIDA

- AIDA \equiv EU FP-7 Integrated Infrastructure project : approved \rightarrow starts Feb. 2011
- On-beam (CERN-SPS) test infrastructure:
 - * Large Area beam Telescope (LAT) \rightarrowtail 5×5 cm² stitched sensors
 - * Alignment Investigation Devices (AID):
 - ♦ box hosting pairs of ladders (e.g. PLUME) and unsupported pixelated systems (SERWIETE)
 - ◊ box front panel contains removable target



- Work program topics $\triangleright \triangleright \triangleright$ relevant for numerous high resolution devices:
 - * alignment capabilities: dedicated equipment and particle tracks
 - * vertex reconstruction accuracy
 - * track reconstruction with different devices (high spatial resolution combined with fast detectors)

Back-Up : Long-Term CMOS R&D with High-Resistivity Substrate

LePIX: monolithic detectors in advanced CMOS

- Submission for fabrication just finalized
 - Several issues: ESD, special layers and mask generation, guard rings
 - Still need to discuss some outstanding fabrication issues with IBM
- 7 chips submitted :
 - 4 test matrices
 - 1 diode for radiation tolerance
 - 1 breakdown test structure
 - 1 transistor test: already submitted once in test submission
- Will require very significant testing effort for which we need to prepare (measurement setup, test cards...)

