Towards a global fit to extract the $B \to X_s \gamma$ decay rate and $|V_{\mathsf{ub}}|$.

Florian Bernlochner (florian@slac.stanford.edu)

Humboldt University of Berlin

ICHEP Paris, July 2010

Supported by

Bundesministerium für Bildung

Hints for new physics in the flavour sector

- BSM physics if present in the observed flavour sector is small and enters via loops. $B \to X_s \, \gamma$ decay rate sensitive to BSM physics. Good knowledge of SM theory prediction and measurements needed for a hunt.

- Model independent framework that combines all available information into a global fit for the $B \to X_s \gamma$ decay rate desirable to constrain BSM.
- Aim of SIMBA: provide a global fit that combines all available information on $B \to X_s \, \gamma$, $B \to X_c \, l \, \bar{\nu}$ and $B \to X_u \, l \, \bar{\nu}$ to extract $|V_{ub}|$ and the $B \to X_s \, \gamma$ decay rate.

The shape function: $\widehat{F}(k)$

Ligeti, Stewart, Tackmann (in preparation)

$$\frac{\mathrm{d}\Gamma_{B\to X_s\,\gamma}}{\mathrm{d}E_{\gamma}} \propto |C_7^{\mathrm{incl}}|^2 \left(\int \mathrm{d}k\,\Gamma_{77}(E_{\gamma},k)\,\widehat{F}(k) + \sum_m \Gamma_m\,\widehat{F}_m(k) \right) \\
+ \sum_{i\neq 7} \mathcal{O}(C_7^{\mathrm{incl}}\,C_i) + \sum_{ij\neq 77} \mathcal{O}(C_i\,C_j),$$

- The b quark distribution function in the B meson (the shape function) determines shape of $B \to X_s \gamma$ spectrum and contains non-perturbative physics.
- Dominant contributions from $C_{i\neq 7}$ can be absorbed into new Wilson coefficient $C_7^{\text{incl}} = C_7 + \sum_k C_k$.
- Residual contributions $\backsim C_{i\neq 7}$ are very small.
- \hat{F}_m : $\frac{1}{m_b}$ corrections from subleading shape functions.

The shape function: $\widehat{F}(k)$

Ligeti, Stewart, Tackmann (in preparation)

$$\frac{\mathrm{d}\Gamma_{B\to X_s\,\gamma}}{\mathrm{d}E_{\gamma}} \propto |C_7^{\mathrm{incl}}|^2 \left(\int \mathrm{d}k\,\Gamma_{77}(E_{\gamma},k)\,\widehat{F}(k) + \sum_m \Gamma_m\,\widehat{F}_m(k) \right) \\
+ \sum_{i\neq 7} \mathcal{O}(C_7^{\mathrm{incl}}\,C_i) + \sum_{ij\neq 77} \mathcal{O}(C_iC_j),$$

- Current analysis of $B \to X_s \gamma$ measurements uses extrapolation to obtain $\mathcal{B}(E_\gamma > 1.6)$ by fixing $\widehat{\mathcal{F}}(k)$ to a model function:

$$\mathcal{B}(\textit{E}_{\gamma}>1.6)=(3.55\pm0.24^{+0.09}_{-0.10}\pm0.03) imes10^{-4}$$
 from HFAG [hep-ex/0603003]

 Can be compared with calculated value at two-loop in the local OPE region:

$$\mathcal{B}(E_{\gamma}>1.6)=(3.15\pm0.23) imes10^{-4}$$
 from Misiak et al. [hep-ph/0609232v2]

- Model function introduces model dependencies. Is there a better way?

A new strategy to constrain BSM physics

- Sensitivity to BSM lies in normalization C_7^{incl} .
- **Strategy**: Global fit to all available data on photon energy spectrum to determine both $\widehat{F}(k)$ and C_7^{incl} simultaneously.
- This offers a model independent alternative to extrapolating measurements down to $\mathcal{B}(E_{\gamma} > 1.6)$.

Partial differential $B \to X_s \gamma$ decay rate, as measured by Belle and BaBar from [arXiv.0907.1384,0711.4889,hep-ex/0508004].

Basis expansion of $\widehat{F}(k)$

Ligeti, Stewart, \hat{F} Tackmann [arXiv:0807.1926]

Model dependent method:

 $\widehat{F}(k)$ model function.

Model indep. method:

Use basis expansion of model function and fit coefficients to measurement true shape of F(k).

$$\widehat{F}(\lambda x) = \frac{1}{\lambda} \left(\sum_{n=0}^{\infty} c_n f_n(x) \right)^2,$$

s.t. $\int dk \, \widehat{F}(k) = \sum_{n=0}^{\infty} c_n^2 = 1.$

Benefits and residual model dependencies

Benefits:

- → Minimizes model dependency.
- \rightarrow Measurement determines precision, e.g. by including terms up to a specific order N.
- \rightarrow Experimental uncertainties and correlations are captured in the basis coefficients c_n .

Truncating expansion at N terms introduces residual model dependencies from the chosen function basis:

- \rightarrow Overall size of truncation error scales with $1-\sum_{n=0}^N c_n^2$.
- \rightarrow Convergence of expansion can be studied by varying basis of expansion and order N of truncation.

Truncation uncertainty

→ The truncation order N should be fixed s.t. the uncertainty due to the envelope generated by the truncation is small with respect to the experimental uncertainties of the fitted coefficients.

 \Rightarrow Allows experimental driven estimation of shape function with uncertainties on reliable footing.

Calculation and global fit

- Used theory for the fits is at NNLL/NNLO and includes $\frac{1}{m_b}$ corrections.
- It is straightforward to include constraints from $B \to X_c \, l \, \bar{\nu}$ and $B \to X_u \, l \, \bar{\nu}$ into the framework.
- Residual contributions from terms $\backsim \mathcal{O}(C_7^{\text{incl}}C_i)_{i\neq 7}$ and $\backsim \mathcal{O}(C_iC_j)_{ij\neq 77}$ are very small in our fit range and are neglected for now.

Disclaimer

- → Results are work in progress, numbers subject to change.
- → No theoretical uncertainties included yet.

Fit Result for $B \to X_s \gamma$ spectra

Fit for 5 coefficients and C_7^{incl} :

- χ^2 fit including experimental correlations

$$\rightarrow \chi^2/\text{dof} = 27.75/37$$

 Fits validated with pseudo experiments

Fit Results for $\widehat{F}(k)$

 $\widehat{F}(k)$ with different number of coefficients consistent and converging

Fit Results for $\widehat{F}(k)$

 $\widehat{F}(k)$ with different number of coefficients consistent and converging

Different bases help to determine truncation error

Here: need 4 coefficients for consistency between bases

Fit Result for $C_7^{\text{incl}} | V_{\text{tb}} V_{\text{ts}}^* |$

- The extracted central value of $C_7^{\rm incl} \, | \, V_{\rm tb} \, \, V_{\rm ts}^* |$ is somewhat higher than SM prediction.
- This is consistent by comparing HFAG with Misiak *et al.*
- Too few coefficients (=fixed model) underestimate uncertainties.

$$-C_7^{\mathsf{incl\ SM}} = 0.354^{+3.2\%}_{-3.5\%} \ |V_{\mathsf{tb}}\ V_{\mathsf{ts}}^*| = 40.68^{+0.9\%}_{-3.6\%} imes 10^{-3}$$

Summary and Outlook

Summary:

- ightarrow We showed the first fit results from SIMBA for the $B
 ightarrow X_{\rm s} \, \gamma$ differential rate, the nonpert. shape function, and $C_7^{\rm incl} \, |V_{\rm tb} \, V_{\rm ts}^*|$ within a model independent framework.
- ightarrow Simultaneously determined m_b^{1S} from $B
 ightarrow X_s\,\gamma$ data.

Outlook:

- ightarrow Include moment constraints of the shape function from $B
 ightarrow X_c \, I \, \bar{\nu}$ and the $B
 ightarrow X_u \, I \, \bar{\nu}$ decay rate to combine all information for a fit on $|V_{ub}|$.
- → Include theory uncertainties into the fit procedure.