

 $\Lambda, \overline{\Lambda}, \Xi, \Xi, \Xi_{1530}, \overline{\Xi}_{1530}, \Omega, \overline{\Omega},$

 $\pi+, \pi-, K+, K-, p, p, n$

Inclusive production of hyperons, as well as of pions, charged kaons, protons, antiprotons and neutrons in p+p collisions at 158 GeV/c beam momentum

Tome Anticic

for the NA49 collaboration

ICHEP, Paris, July 2010

The NA49 detector

- Various evidence points to existence of QGP, and to existence of the onset of deconfinement at energies between $\sqrt{\text{SNN}} = 6.3 17.3 \text{ GeV}$
- However, a good understanding of the underlying p-p and p-A process necessary to support this conclusion or to perhaps give alternative explanations
- NA49 experiment unique in providing one detector for p-p, p-A, and A-A analysis, by changing targets and incoming beam

NA49 covers forward hemisphere; because of the symmetry of p+p this allows extraction of 4π integrated multiplicities

13 m TOF-GL MTPC-L VERTEX MAGNETS VTX-1 VTX-2 BPD-1 TOF-TL RFAM VTPC-2 VTPC-1 TOF-TR RCAL COLL VCAL PESTOF-R MTPC-R BPD-2 BPD-3 PESTOF-L TOF-GR

Hadron spectrometer
Four TPCs; two in the **B** field
and two others outside;
for a precise measurement of **p** and dE/dx

Large acceptance: ≈50% High momentum resolution

Good particle identification by dE/dx, decay topology, invariant mass

Hyperons

- •Strange particles do not exist in colliding protons, and as such are excellent probes of the underlying physics of the production mechanism
- •Strangeness enhancement an indication of QGP formation
- Models sensitive to hyperon production at SPS energies

$\Lambda, \overline{\Lambda}$

Transverse and long. distribution: **Ξ1530** only

	Ξ_{1530}
$< p_T >$	$0.62 \pm 0.06 \pm 0.07$
Temperature	$148 \pm 19 \pm 7$

Transverse and long. distributions: Ω only

	Ω
$< p_T >$	$0.64 \pm 0.11 \pm 0.09$
Temperature	$137 \pm 27 \pm 6$

7/15

Anti baryon/baryon ratio

Anti baryon to baryon ratio at y=0 as a function of strangeness

String models predict:

$$\frac{\Xi/\Xi = 0.8 - 1.2}{\Omega/\Omega = 1.6 - 1.9}$$

Strangeness enhancement

$$E = \frac{2}{\langle N_{\rm w} \rangle} \frac{\mathrm{d}N/\mathrm{d}y(\mathrm{A+A})}{\mathrm{d}N/\mathrm{d}y(\mathrm{p+p})}$$

Pions, kaons, protons, neutrons

- 6.4 M inelastic p-p events (4.8 M after event cuts)
- Can not use topology for PID, so excellent knowledge of dE/dx required
- To mimimize systematic errors on this high statistics sample, also bin size corrections employed
- Results corrected for feeddown from hyperon weak decays

• Detailed comparison with data from other experiements and energies at ISR, SIS,

Serpukhov, RHIC, Fermilab, ...

Detailed study of particle ratios

C.Alt et al., EPJC 45 (2006) 343

arXiv:1004.1889v

T.Anticic et al., EPJC 65 (2010) 9

π+ π•0 to 2 GeV/c in transverse momentum
•0 to 0.85 in Feynman x

- •Systematic and statistical uncertainties well below 5%
- •Rich substructure of data (also in the kaon and proton data) indication that particles are produced via intermediate higher mass resonances
 - •profound consequences for the understanding of particle production in the non-perturbative sector of QCD

tome.anticic@cern.cn

K+, K-

• 0 to 1.7 GeV/c in transverse momentum

 $m_T - m_K [GeV/c^2]$

 $m_T - m_K [GeV/c^2]$

0 to 0.5 in Feynman x

Protons, antiprotons, neutrons

- 0 to 1.9 GeV/c (0 to 1.5 GeV/c) in transverse momentum
- -0.05 to 0.95 (-0.05 to 0.4) in Feynman x for protons (anti-protons), respectively
- pT integrated neutron cross sections: 0.1 to 0.9 in Feynman x

Yields per inelastic event

Yield per inelastic event											
	NA49		VENUS	Fritiof	EPOS	URQMD	HSD	Hijing1.5	Hijing1.7	Stat models A/B	
π+	3.018	± 0.0045	2.915	3.0305	3.05854	3.079	2.928			3.25	3.28
π–	2.360	± 0.0035	2.260	2.3407	2.38359	2.450	2.205020			2.43	2.45
K+	0.21	±0.02			0.23669	0.25290	0.272959			0.228	0.200
K–	0.13	±0.013			0.13577	0.16463	0.181031			0.119	0.107
р	1.1623	±0.0035	1.228	1.2653	1.23175	1.311	1.200550			1.094	1.125
p	0.03860	±0.00011	0.045	0.0668	0.03773	0.06033	0.044834			0.0364	0.0445
Λ	0.1095	± 0.0015 ± 0.0110	0.152	0.1488	0.13857	0.1428	0.150434	0.199	0.231	0.133	0.117
$\overline{\Lambda}$	0.01425	$\pm 0.00024 \pm 0.00082$	0.0199	0.0185	0.03304	0.01753	0.01043	0.0192	0.0305	0.0147	0.0141
Ξ	0.00265	±0.00010 ±0.00027	0.00628	0.00260	0.00228	0.002609	0.001726	0.00143	0.00270	0.00285	0.00110
Ξ	0.000947	±0.000036 ±0.000075	0.00267	0.00114	0.00059	0.002221	0.000872	0.00207	0.00387	0.00092	0.00039
Ξ153 0	0.000630	±0.00011 ±0.00017	0.00469	0.001309		0.000220					
Ω	0.000122	2 ±0.000012 ±0.000013	0.00060	0.000014		0.000353	0.000012	0.000050	0.00013	0.000089	0.000021

Significant discrepancies for most models/particles

Conclusions/Future

- High quality double differential data for hyperons, pions, kaons, protons
 - •basis for interpretation of particle production mechanisms in pp as well as their implication for pA and AA reactions
 - •important new constraint for string models
 - detailed study of hyperon production in pA underway
 - •In the near future will study an order of magnitude more data at NA61, the upgrade of NA49
 - •study of the onset of deconfinement and search for the critical point of strongly interacting matter

