

Paris, ICHEP 2010

María Cepeda (CIEMAT, Madrid) on behalf of the CMS Collaboration

ElectroWeak Physics at the LHC

- Studies of W and Z bosons in the early phase of the LHC will allow to
 - Measure the first ElectroWeak observables at the LHC
 - Understand the building blocks for future analysis (leptons, met, jets)
 - Test perturbative QCD predictions and PDFs in pp Collisions at the TeV scale
 - Improve our measurements of Luminosity
- W and Z are characterized by their high production rates and clean and simple experimental signatures in their leptonic decay channels:
 - W: High pt, isolated lepton + high Missing Transverse Energy (ME_T)
 - Z: 2 high pt isolated leptons

- Ldt=198 nb⁻¹ analyzed
- Data quality ensured both through online monitoring of the detector status and validation of reconstructed quantities

Muons

- W→µν event selection and cross-section determination
- ightharpoonup $Z
 ightharpoonup \mu\mu$ event selection and cross-section determination
- Systematic effects

Electrons

- W→ev event selection and cross-section determination
- \square Z \rightarrow ee event selection and cross-section determination
- Systematic Effects

Measurements

- Combined results for cross-section and Ratios
- W Charge Asymmetry
- Associated V+Jets production

Conclusions

$W\rightarrow \mu\nu$ and $Z\rightarrow \mu^+\mu^-$

Z Candidate

W→µv Selection

- Event triggered by Level1+HLT, $p_T > 9$ GeV
- **Selection Criteria**
 - Muon p, > 20 GeV, $|\eta|$ < 2.1
 - Isolation $(\Sigma p_T(tk) + \Sigma E_T(had+em))/p_T < 15\%$
 - ME_T reconstructed using Pflow techniques
 - Drell Yan rejection (veto on events with a second muon of $p_T>10 \text{ GeV}$)

CMS preliminary 2010

150

- Main source of BG: QCD (b hadron decays)
- W Signal yield extracted through a Binned Likelihood fit to the MT distribution (Signal + QCD & EWK BGs)
 - W Signal and EWK MT shapes modeled from MC
 - QCD MT Shape extracted from data (isolation inversion)

$W^{\pm} \rightarrow \mu^{\pm} v$ Selection

$$\sigma(pp \rightarrow W + X \rightarrow \mu v + X) = 9.14 \pm 0.33 \text{ nb}$$

R =1.69 ± 0.12

$$\sigma(W^+ \rightarrow \mu^+ v) = 5.75 \pm 0.26 \text{ nb}$$

 $\sigma(W^- \rightarrow \mu^- v) = 3.39 \pm 0.15 \text{ nb}$

$Z \rightarrow \mu^+ \mu^-$ Selection

Event triggered by Level1 (Muon)+HLT (Muon+Tracker), p_T > 9 GeV

Selection Criteria

- 2 muons p_t> 20 GeV
- Opposite charge muons
- At least one in $|\eta| < 2.1$
- Track-Based isolation (Σp_T < 3 GeV)</p>

- Background negligible (~0.3%)
- 77 Events selected the invariant mass range m_{μμ} (60,120) GeV

 $\sigma(pp \rightarrow Z + X \rightarrow \mu\mu + X) = 0.88 \pm 0.10 \text{ nb}$

Systematic Uncertainties

- Reconstruction and Lepton ID from data—driven studies
- Momentum Scale and Resolution from J/Psis, cosmic studies, Z Mass spectrum
- E_T scale/resolution from W recoil studies
- QCD Background uncertainty from the difference between isolated MC distribution and non-isolated data template
- PDF uncertainties evaluated via CTEQ66, MSTW08NLO, NNPDF2.0 sets

Source	W channel (%)	Z channel (%)
Muon reconstruction/identification	3.0	2.5
Trigger efficiency	3.2	0.7
Isolation efficiency	0.5	1.0
Muon momentum scale/resolution	1.0	0.5
₽ _T scale/resolution	1.0	=
Background subtraction	3.5	= 1
PDF uncertainty in acceptance	2.0	2.0
Other theoretical uncertainties	1.4	1.6
TOTAL (without luminosity uncertainty)	6.3	3.8
Luminosity	11.0	11.0

W→ev and Z→ee

Z Candidate

- = Events triggered by Level1 (ECAL) + HLT ($E_T > 15$ GeV)
- Selection Criteria:
 - □ Electron E_T> 20 GeV
 - $|\eta| < 1.4442$ (Barrel), 1.566< $|\eta| < 2.500$ (Endcap)
 - Isolation (independent cuts on track, em, had)
 - Drell Yan rejection (veto on events with a second electron of E_T>20 GeV)

- QCD BG dominated by fake electrons
- Unbinned Likelihood fit to the ME_T distribution
- W Signal and ElectroWeak ME_T shape well modeled from Monte Carlo
- QCD background is parameterized through a modified Rayleigh distribution with E_T dependent resolution

W±→e±v Selection

458±23 W⁺ Yield 339±20 W⁻ Yield

(statistical error only)

 $\sigma(pp \rightarrow W + X \rightarrow ev + X) = 9.34 \pm 0.36 \text{ nb}$ R = 1.26 ± 0.10

 $\sigma(W^+ \rightarrow e^+ v) = 5.18 \pm 0.26 \text{ nb}$ $\sigma(W^- \rightarrow e^- v) = 4.13 \pm 0.24 \text{ nb}$

- Events trigger by Level1 (ECAL) + HLT (E_T>15 GeV)
- Selection Criteria
 - 2 electrons with E_T>20 GeV
 - Isolated (independently on tracker and calorimeters)

- Background negligible
- ☐ 61 events selected in the Invariant mass range m_{ee} (60,120)

 $\sigma(pp \rightarrow Z+X \rightarrow ee+X) = 0.88 \pm 0.11 \text{ nb}$

Systematic Uncertainties

- Electron energy scale and resolution from Z Mass shape
- E_T scale/resolution from W recoil studies
- QCD subtraction uncertainty from comparison with control samples (cut inversion)
- PDF uncertainties evaluated with CTEQ66, MSTW08NLO, NNPDF2.0

Source	W channel (%)	Z channel (%)
Electron reconstruction/identification	6.1	7.2
Trigger efficiency	0.6	-
Isolation efficiency	1.1	1.2
Electron momentum scale/resolution	2.7	_
	1.4	=
Background subtraction	2.2	-
PDF uncertainty in acceptance	2.0	2.0
Other theoretical uncertainties	1.3	1.3
TOTAL (without luminosity uncertainty)	7.7	7.7
Luminosity	11.0	11.0

Measurements

Cross-Sections, Ratios
Charge asymmetry
W+Jets associated production

W,Z production cross-sections...

Measurements in agreement with SM predictions

Maria Cepeda, ICHEP2010

... added to the picture

W⁺, W⁻ Cross-Sections

W Charge Asymmetries

 W charge asymmetry as a function of lepton pseudorapidity will improve our knowledge of Parton Density Functions (PDFs)

$$A(\eta) = \frac{d\sigma^{(+)}/d\eta_{\ell} - d\sigma^{(-)}/d\eta_{\ell}}{d\sigma^{(+)}/d\eta_{\ell} + d\sigma^{(-)}/d\eta_{\ell}}$$

 With the current limited statistics, we perform a first measurement in 3 pseudorapidty bins

W+Jets Associated Production

Jet Reconstruction:

- Anti-Kt algorithm (infra-red safe)
- Particle Flow

Statistical error only(Jet energy scale (10-20%))

Conclusions

- We have presented the first measurements of ElectroWeak physics in CMS
 - Inclusive Cross-Sections of W and Z in their leptonic decays (e, mu)
 - Ratios of W/Z and W+/W- cross sections
 - W Charge asymmetry as a function of the lepton pseudo-rapidity
 - W +jets Production
- Efficiencies and Backgrounds studied and evaluated from data control samples
- Leptons and ME_T performance is in very good agreement with Monte Carlo simulations of the CMS detector

All results are in agreement with the Standard Model predictions,

References

□ CMS PAS EWK-10-002: "Measurements of Inclusive W and Z Cross Sections in pp Collisions at $\sqrt{s} = 7$ TeV"

http://cdsweb.cern.ch/record/1279615

- Other EWK results at ICHEP2010
 - J. Mans, "W and Z boson production in pp collisions at CMS at \sqrt{s} = 7 TeV" (Session 2)
 - L. Lusito, "Evidence for Z -> tau+ tau- Production in 7 TeV proton-proton Collisions" (poster)
 - E. Yazgan, "Forward-backward Charge Asymmetry for Muon Pairs via Z/gamma* at 7 TeV in CMS" (poster)
 - J. Damgov, "A Study of the Production of Vector Bosons and Jets at 7 TeV" (poster)

Muon Reconstruction and Identification

- Events recorded online using Level-1 Muon trigger and High Level Trigger (pt> 9 GeV, |η|<2.1)
- Muon Identification: Consistency between tracker detector and muon system measurments:
 - Muon reconstructed by two algorithms (inout, out-in)
 - Good quality of Global fit (muon+tracker)
- Precise measurement of momentum ensured requiring a minimal amount of tracker hits, and at least one in the innermost detector
- Muon must have minimal activity in tracker and calorimeters
- Cosmic contamination reduced through a cut on transverse impact parameter

Reconstruction, ID Efficiencies

estimated through Inclusive muon samples and Tag&Probe methods

Trigger efficiencies calculated through Tag&Probe, and cross-checked through Jet, MET and Tau triggered samples

Isolation efficiency from Random Cone Techniques. Consistent with Tag&Probe

23

Electron Reconstruction and Identification

Events required to pass Level-1 and High Level
 Trigger requirements, with a ECAL cluster E_T>15
 GeV

Talk by R. SALERNO

- Electron ID requirements:
 - Clusters of ECAL deposits matched to tracks in the inner detector, taking into account bremsstrahlung
 - Good matching (track, cluster) in η and φ
 - ElectroMagnetic shower shape characteristics (limited leakage in the hadronic calorimeter, narrow width in η)
- Photon conversion rejection (hits in tracker, opening angle with neighbour tracks)
- Isolation criteria, cutting separately on tracker,
 Ecal and Hcal activity around electron candidates,
 (rejection of misidentificated particles + real electrons from jet fragmentation)

Efficiency studies on data:

Reconstruction and ID Efficiencies calculated from Tag&Probe

Trigger Efficiency from Minimum Bias collisions

Isolation efficiency from Random ConesE

Isolation Efficiencies

 Random Cone studies for Isolation Efficiency performed both for muons and electrons

W+Jets Associated Production

Same lepton selection as the inclusive analysis

Jet Selection:

- Infra-red safe Anti-Kt Jet reconstruction
- Two thresholds E_T>15 GeV and E_T>30 GeV
- Lepton-Jet separation: ΔR<0.5</p>
- Particle Flow reconstruction
- Cone radios of ΔR=0.5,
- □ |η|<2.5

- M_T used as discriminating variable in both channels
- Main source of systematics error: jet energy scale (10-20%)

M_⊤ [GeV]

$W\rightarrow \mu\nu$, Track-ME_T Algorithm

Maria Cepeda, ICHEP2010

100 120

W→ev, Track-ME_T Algorithm

20

30

E_τ [GeV]

10

 \slash s = 7 TeV

100

⊭_τ [GeV]

L dt = 198 nb⁻¹

 $W^+ \rightarrow e^+ v$

Data

EWK

QCD

80

60