

UNIVERSITE DE LYON

Search for Leptoquarks and Technicolor at the Tevatron

Gérald Grenier Université Lyon 1, IPN Lyon, IN2P3

ICHEP 2010, Paris, July 22nd-28th 2010

Gérald Grenier, ICHEP 2010, Paris, July 24th 2010

Issenne National de Physique Nucléan de <u>de</u> Physique dus Partucada

p1

Tevatron luminosity

Run II (2001-ongoing) \sqrt{s} = 1.96 TeV

Current peak luminosity ~3.5 x 10³² cm⁻²s⁻¹

Both experiments have now ~ 8 fb⁻¹ on tape.

UNIVERSITE DE LYON

Leptoquarks

New interactions (scalar or vector) with quark-lepton-leptoquark vertices. All predicted leptoquarks (LQ) are color triplets.

TeVatron studies assume leptoquark pair production through gluon s-channel.

Scalar LQ production depends only on LQ mass. Vector LQ production depend on LQ masses and anomalous couplings $\kappa_{_{G}}$ and $\lambda_{_{G}}$. Vector LQ production > scalar LQ production.

Gérald Grenier, ICHEP 2010, Paris, July 24th 2010

Issente National de Physique Nucléau de les Persente des Particule

p3

Université Claude Bernard

$LQ \to q\nu$

$LQ \rightarrow bv$

BE PERSINTE DES PARTICALE

Gérald Grenier, ICHEP 2010, Paris, July 24th 2010

INSTRUT NATIONAL DE PHYSIQUE NUCLÉAR BUIDE PERSIDUE DES PARTUMES

Look for WZ production with W and Z decaying to electron or muon.

 $\rho_{_{T}} \rightarrow WZ$

Select events with MET> 30 GeV and >=3 electron/muon with Pt>20 GeV. Electron $|\eta|<1.1$ or $1.5<|\eta|<2.5$ and muon $|\eta|<2$ First select Z with opposite charge electron or muon pairs. $80 < M_{ee} < 102$ GeV and $70 < M_{\mu} < 110$ GeV Then select highest Pt remaining lepton + MET to form W candidate. Discriminate signal with WZ transverse mass.

95% CL exclusion 208<M(ρ_{T})<408 GeV for M(ρ_{T}) < M(π_{T}) + M(W)

Resonances

nut National de l'hysique Nuclea de Physique des Particul

p12

UNIVERSITE DE LYON

Summary of results

95% CL lower mass limits for scalar leptoquarks in lepton+quarks with BR=100% $LQ \rightarrow e+q$ with q=u,d,s,c,b : $M_{LQ} > 299$ GeV D0 with 1/fb $LQ \rightarrow \mu+q$ with q=u,d,s,c,b : $M_{LQ} > 316$ GeV D0 with 1/fb $LQ \rightarrow \tau+q$ with q=u,d,s,c : no scalar mass limits, Vector $M_{LQ} > 251$ GeV CDF with 322/pb $LQ \rightarrow \tau+b$: $M_{LQ} > 210$ GeV D0 with 1.05/fb $LQ \rightarrow \nu+q$ with q=u,d,s,c : $M_{LQ} > 214$ GeV D0 with 2.5/fb $LQ \rightarrow \nu+b$: $M_{LQ} > 247$ GeV D0 with 5.2/fb

No direct searches for LQ \rightarrow t+v, t+e, t+ μ and t+ τ .

Technicolor updated 95% CL exclusion domains $208 < M(\rho_{T}) < 408 \text{ GeV for } M(\rho_{T}) < M(\pi_{T}) + M(W)$ (D0 $\rho_{T} \rightarrow WZ$ trilepton with 4.1/fb) $180 < M(\rho_{T}) < 250 \text{ GeV and } 95 < M(\pi_{T}) < 145 \text{ GeV}$ (CDF $\rho_{T} \rightarrow W\pi_{T}$ with 1.9/fb) $260 < m_{\rho T8} < 1100 \text{ GeV}$ (CDF dijet resonance with 1.13/fb) m(Z') < 900 GeV (CDF tī resonance with 4.8/fb)

p13

Gérald Grenier, ICHEP 2010, Paris, July 24th 2010

Issente National de Physique Nucléan et de Personue des Partugule

Conclusion

p14

No sign of leptoquarks nor technicolor at the TeVatron so far.

Signals have been searched for in a wide range of final states

95% CL exclusion domains have been extended but there is still room for further searches.

Collider Run II Integrated Luminosity

Technicolor

From particle data group review.

Process	Excluded mass range	Decay channels		
$p\overline{p} \to \rho_T \to W\pi_T$	$170 < m_{\rho_T} < 215 \text{ GeV}$ and $80 < m_{\pi_{\pi_{\pi_{\pi_{\pi_{\pi_{\pi_{\pi_{\pi_{\pi_{\pi_{\pi_{\pi_$	$\begin{array}{c} \rho_T \to W \pi_T \\ \pi_T^0 \to b\overline{b} \end{array}$	$180 < m_{\rho T} < 250 \text{ GeV}$	
	for $M_V = 500 \text{ GeV}$	$\pi_T^{\pm} \to b\overline{c}$	and 95 < $m_{\pi T}$ < 145 GeV	
$p\overline{p} \to \omega_T \to \gamma \pi_T$	$\begin{array}{l} 140 < m_{\omega_T} < 290 \ {\rm GeV} \\ {\rm for} \ m_{\pi_T} \approx m_{\omega_T}/3 \\ {\rm and} \ M_T = 100 \ {\rm GeV} \end{array}$	$\begin{array}{c} \omega_T \to \gamma \pi_T \\ \pi_T^0 \to b \overline{b} \\ \pi_T^{\pm} \to b \overline{c} \end{array}$	(CDF with 1.9 /fd)	
$p\overline{p} \to \omega_T / \rho_T$	$m_{\omega_T} = m_{\rho_T} < 203 \text{ GeV}$ for $m_{\omega_T} < m_{\pi_T} + m_W$ or $M_T > 200 \text{ GeV}$	$\omega_T/\rho_T \to \ell^+ \ell^-$	New 208<Μ(ρ _τ)<408 GeV	
7	$m_{\omega_T} = m_{\rho_T} < 280 \text{ GeV}$ for $m_{\omega_T} < m_{\pi_T} + m_W$ or $M_T > 500 \text{ GeV}$	$\omega_T/\rho_T \to \ell^+ \ell^-$	for M(ρ_T) < M(π_T) + M(W) (D0 with 4.1 /fb)	
$e^+e^- \to \omega_T/\rho_T$	$90 < m_{ ho_T} < 206.7 \text{ GeV} m_{\pi_T} < 79.8 \text{ GeV}$	$ \begin{array}{l} \rho_T \to WW, \\ W\pi_T, \ \pi_T\pi_T, \\ \gamma\pi_T, \ \text{hadrons} \end{array} $		
$p\overline{p} \rightarrow \rho_{T8}$	$260 < m_{\rho_{T8}} < 480~{\rm GeV}$	$\rho_{T8} \rightarrow q\overline{q}, \ gg$	_260< m _{_0T8} < 1100 GeV (CDF with 1.13 /fb)
$\begin{array}{c} p\overline{p} \to \rho_{T8} \\ \to \pi_{LQ} \pi_{LQ} \end{array}$	$m_{ ho_{T8}} < 510 \text{ GeV} m_{ ho_{T8}} < 600 \text{ GeV} m_{ ho_{T8}} < 465 \text{ GeV}$	$ \begin{aligned} \pi_{LQ} &\to c\nu \\ \pi_{LQ} &\to b\nu \\ \pi_{LQ} &\to \tau q \end{aligned} $		
$p\overline{p} \rightarrow g_t$	$\begin{array}{l} 0.3 < m_{g_t} < 0.6 \ {\rm TeV} \\ {\rm for} \ 0.3 m_{g_t} < \Gamma < 0.7 m_{g_t} \end{array}$	$g_t \to b\overline{b}$		
$p\overline{p} \to Z'$	$m_{Z'} < 480 \text{ GeV}$ for $\Gamma = 0.012 m_{Z'}$ $m_{Z'} < 780 \text{ GeV}$ for $\Gamma = 0.04 m_{Z'}$	$Z' \to t\overline{t}$	m(Z')<720 GeV (CDF with 0.955 /fb) <820 GeV (D0 with 3.6 /fb)	p16
	Gérald Greni	er, ICHEP 2010	, Paris, July 24 th 2010	Z P 3