Searches for b' and W' at the Tevatron

Luca Scodellaro
Instituto de Fisica de Cantabria – CSIC
On behalf of the CDF and DØ Collaborations

Overview of Latest Searches

- Heavy quarks decaying to tW
 - Δ Pair production of b'
 - △ Single production of heavy vector-like quarks
- Heavy charged bosons W' decaying to tb
 \(\Delta \) Look in the single top sample
- Searches for resonances W'→WZ
 ∆ See Adam Lyon's talk

Fourth Generation Quarks b'

- Fourth generation suggested by several BSM models
 A Baryon asymmetry, heavier Higgs boson
- Previous limits on fourth generation at LEP:

```
\Delta m<sub>V4</sub>>M<sub>z</sub>/2 from Z width \Delta m<sub>b'</sub>>100 GeV/c<sup>2</sup>
```

- From CKM matrix constraint, expected low mixing with light quarks:
 - Δ Pair production favorite
 - Δ Decays likely into third generation quarks: b'→tW

b'→Wt: Signal and Selection

- Look for b' pair production
- Same-charge dilepton channel:
 - Δ Two same-charge leptons $p_T>20$ GeV/c, one isolated
 - Δ Two jets E_T>15 GeV, at least one tagged as b-jet
 - △ Missing transverse energy **E**_T>20 GeV
- Lepton+jets channel:
 - Δ One isolated lepton, p_T>20 GeV/c
 - Δ Five jets $E_T>20$ GeV, at least one tagged as b-jet
 - △ Missing transverse energy **£**_T>20 GeV

b'→Wt: Dilepton Channel

No signal observed in 2.7 fb⁻¹ of data

 $m_{b'}>338 \, GeV/c^2$

Analysis details in Adam's talk yesterday

b'→Wt: Lepton+Jets Channel

- Same analysis technique as for top searches
 A Improved modeling of top events with high jet multiplicity
- Good agreement data-simulation in 4.8 fb⁻¹ of data

Process	Electron	Muon
Top pair production	137±17	166±14
Single top	0.8±0.1	1.1±0.2
Z+jets	0.9±0.1	1.3±0.2
W+heavy flavor	14±5	15±3
W+light flavor	5±3	5.1±1.5
QCD multijets	15±12	1.4±0.9
Dibosons	1.3±0.1	1.9±0.2
Total	174±21	192±14
Data	157	200

b'→Wt: Lepton+Jets Channel

Discriminant variable: Jet-HT

 \triangle Njets = 5: Jet-HT = H_T (H_T = $\sum_{i \in I} E_T + p_T^{lept.} + \not\!\!E_T$)

 \triangle Njets = 6: Jet-HT = H_T + 1000

 \triangle Njets \ge 7: Jet-HT = H_T + 2000

b'→Wt: Lepton+Jets Channel

Fitting Jet-HT distribution on 4.8 fb⁻¹ of data

 $m_{b'}>385 \, GeV/c^2$

Heavy Vector-Like Quarks

- Heavy quarks with vector-like couplings to W boson
 Avoid mass limit from perturbativity in Yukawa couplings
- Recent models with warped extra dimension allows sizable mixing with light SM quarks (PRD79.054018)
- Focus on two new heavy quarks, U and D:

△ Assume dominant decay to W: U→Wd, D→Wu

$$\Delta \sigma(q\bar{q}'\rightarrow qQ) = \tilde{K}_{qQ}^2 \sigma_{th.}(q\bar{q}'\rightarrow qQ)$$

Coupling between heavy quark Q and light SM quark q

Computation of cross section within SM: depends only on Q mass

Heavy Quarks: Sample Selection and Composition

Sample selection (5.7 fb⁻¹):

 Δ One isolated lepton p_T>20 GeV/c

 Δ Two jets: $E_T^{\text{jet1}}>25$ GeV, $E_T^{\text{jet2}}>20$ GeV

 Δ Missing transverse energy $E_T>20$ GeV

Z+jets, diboson, tt, single top
 A From simulations

W+jets, QCD multijet production
 △ From fit to E_T distribution

Heavy Quarks: Signal Region

Signal region:

 $\Delta E_{T}^{\text{jet1}}$ >60 GeV, $\Delta \phi(E_{T}, \text{lepton})$ <2.2, E_{T} >30 GeV

Yields:

Process	Events
W+jets	10648 ± 319
Dibosons	599 ± 60
QCD multijets	581 ± 232
Z+jets	497 ± 75
tt	355 ± 43
Single top	149 ± 18
Total	12829 ± 409
Data	13243

Invariant mass of lvj system:

Heavy Quarks: Limits

Upper limits on σ(qq̄[']→qQ)

■ $\sigma(q\bar{q}' \rightarrow qQ) = \tilde{K}_{qQ}^2 \sigma_{th.}(q\bar{q}' \rightarrow qQ)$ From SM computation

Heavy Charged Bosons W'

- Predicted by several BSM theories
- General lagrangian depends on left and right-handed couplings to fermions:

$$\mathcal{L} \sim g_W f_i \gamma_\mu (a^R_{ij} (1+\gamma^5) + a^L_{ij} (1-\gamma^5)) W'^\mu f_j + h.c.$$

- W'→tb decay sensitive to both left and right-handed couplings
- Interference with SM single top production:

W'→tb: Sample Selection

- Same analysis setup as in single top searches
- CDF selection:
 - \triangle One isolated lepton p_T>20 GeV/c \triangle Two or three jets E_T>15 GeV, at least one tagged as b-jet
 - △ Large missing transverse energy £_T>25 GeV

 Δ One isolated lepton p_T>15 (20) GeV/c Δ Two (three or four) jets p_T>15 GeV/c p_T^{jet1}>25 GeV/c, at least one b-tagged jet Δ Missing transverse momentum p_T >20(25) GeV/c

W'→tb: Yields

CDF: 1.9 fb⁻¹

■ DØ: 2.3 fb⁻¹

Process	2 jets	3 jets
Wbb	409 ± 123	126 ± 38
Wcc+Wcj	412 ± 127	10 ± 34
Wjj (mistags)	277 ± 35	83 ± 11
QCD multijets	52 ± 21	17 ± 7
Top pair production	127 ± 13	292 ± 37
Single top (t-channel)	53 ± 8	16 ± 2
Single top (s-channel)	35 ± 5	12 ± 2
Dibosons	54 ± 4	18 ± 2
Z+jets	23 ± 3	9 ± 2
Total	1444±255	682±83
Data	1362	617

Process		2, 3 and 4 jets	
W+jets		280 ± 18	
QCD multijets	61 ± 11		
Top pair production		425 ± 59	
Single top (t-channel)		26 ± 3	
Dibosons		13 ± 2	
Z+jets		26±3	
	Total	831 ± 62	
	Data	831	

W'→tb: Signal Extraction

 CDF: fit to the invariant mass of the tb system DØ: enhance sensitivity through multivariate discriminant based on boosted decision trees

• Assuming SM couplings $(g_{W'} = g_w)$:

 $\Delta M_{W'}>m_{VR}$: $M_{W'}>800 \text{ GeV/c}^2$

 $\Delta M_{W'} < m_{VR} : M_{W'} > 825 \text{ GeV/c}^2$

Relaxing assumptions on W' couplings (g_{W'}/g_W=a^R):

 \triangle Exclusion region in the $g_{W'}/g_w$ - $M_{W'}$ plane

 Construct signal templates varying left/right-handed couplings a^{L/R} between o and 1 in steps of o.1

Δ Couplings to first and third generation quarks taken as equal Δ W-W' interference accounted for

Pure right-handed W': a^L = o, a^R = 1

 $\Delta M_{W'}>m_{VR}: M_{W'}>885 \text{ GeV/c}^2$

 Δ $M_{W'}$ < m_{VR} : $M_{W'}$ >890 GeV/ c^2

Pure left-handed W': $a^{L} = 1$, $a^{R} = 0$

$$\Delta$$
 M_{W′}>863 GeV/c²

Mixed couplings W':

$$a^{L} = 1$$
, $a^{R} = 1$

 Δ M_{W′}>916 GeV/c²

Summary plots for DØ limits on W' mass and couplings

Δ Lower limits on W' mass

(b) **DØ 2.3** fb⁻¹ 900 0.8 850 800 0.6 **750** 0.4 **700** 0.2 **650** 600 **0.8** 0.2 0.4 0.6 $\mathbf{a}^{\mathbf{L}}$

△ Upper limits on a^L

Conclusions

- Tevatron has strong effort in searches for heavy BSM particles
- World's strongest limits on searches for heavy quarks b' and heavy charged bosons W'

```
\Delta m<sub>b′</sub>>385 GeV/c² \Delta Right-handed W': M<sub>W′</sub>>885 GeV/c² \Delta Left-handed W': M<sub>W′</sub>>863 GeV/c²
```

Still great potential to exploit in next years

 \(\Delta \) More statistics to analyze and channels to investigate

Backup Material

The Tevatron Collider

The Tevatron Collider

The CDF and DØ Experiments

Multipurpose experiments collecting data at high efficiency

- > Muon chambers, EM calorimeter and tracking for lepton ID
- > Calorimeters for jet reconstruction
- > Silicon detectors for b quark tagging

B Tagging

- CDF: reconstruct displaced vertices with cut on L_{xy}/σ
 - > Vertex mass separation
- DØ: use NN to combine vertex properties and displaced track info
 - > Tag in $|\eta|$ > 2 region

b'→Wt: Backgrounds

■ Z+jets or $t\bar{t}$ events, with $e^+ \rightarrow e^+ \gamma \rightarrow e^+ e^+ e^-$

- Fakes: second lepton from jets
 - > fake rate modeled in jet data

b'→Wt: Yields (2.7 fb⁻¹)

Observed and predicted events:

Process	ee	μμ	еμ	Total
Z+jets	0.01 ± 0.01	0	0.02 ± 0.02	0.03 ± 0.03
Top dilep.	0.06 ± 0.04	0	0.02 ± 0.03	0.15 ± 0.05
Fakes	o.6 ± o.6	0.03 ± 0.03	0.5 ± 0.5	1.4 ± 1.4
Total	0.7 ± 0.6	0.3 ± 0.3	o.6 ± o.5	1.6 ± 1.4
Data	0	1	1	2

b'→Wt: Limits

Fitting the observed jet multiplicity distribution

