

Observation of B→φKγ and Measurement of time-dependent CP violation

Himansu Sahoo University of Hawaii for the Belle Collaboration

ICHEP, Paris, July 22-28, 2010

Himansu Sahoo - University of Hawaii

Radiative Penguin

• Radiative $b \rightarrow s\gamma$ decays : excellent probe for physics beyond the SM.

- <u>Flavor Changing Neutral Current processes</u>.
- Forbidden at tree-level in the SM, but allowed through loop (penguin) diagrams.
- Non-SM particles can contribute to the loop.

Search for Right-Handed currents

- In SM, radiative photon from $b \rightarrow s\gamma$ transition is flavor-specific.
- $B^0 \leftrightarrow \overline{B^0}$ interference can occur only through a helicity flip.
- The CP asymmetry in SM is suppressed by the quark mass ratio. $S \approx -2(m_s/m_b)\sin(2\phi_1) \sim 0.03$
- A large CP asymmetry will be a clear hint of new physics (LRSM model).
- AGS method is valid for any $B^0 \rightarrow P^0 Q^0 \gamma$ with C eigenstate mesons (e.g. $B^0 \rightarrow \phi K_s \gamma$)

D.Atwood, T.Gerson, M.Hazumi, A.Soni, PRD 71, 076003 (2005)

TCPV in $b \rightarrow s\gamma$ modes

$$B^0 \to K_S \pi^0 \gamma$$

PRD 74, 1111(R) (2006) 535 M BB

Vertex is from Ks
$$\rightarrow \pi^+\pi^-$$
 (both pions are required to have enough hits in the silicon)

$$S_{K_S \pi^0 \gamma} = -0.10 \pm 0.31 \pm 0.07$$
$$A_{K_S \pi^0 \gamma} = -0.20 \pm 0.20 \pm 0.06$$

$$B^0 \to K_S \rho^0 \gamma$$

PRL 101, 251601 (2008) 657 M BB

Vertex is from $\rho_0 \rightarrow \pi^+ \pi^-$ (no K_S vertex is needed)

$$S_{\mathrm{K}_{\mathrm{S}}\rho^{0}\gamma} = 0.11 \pm 0.33^{+0.05}_{-0.09}$$
$$\mathcal{A}_{\mathrm{K}_{\mathrm{S}}\rho^{0}\gamma} = 0.05 \pm 0.18 \pm 0.06$$

Consistent with the SM expectation

ICHEP, Paris, July 22-28, 2010

Previous Measurements of $B \rightarrow \phi K \gamma$

ICHEP, Paris, July 22-28, 2010

Signal Extraction

• B candidates are selected using ΔE and M_{bc}

$$\Delta E \equiv E_{\rm B}^* - E_{\rm beam}^* \qquad M_{\rm bc} \equiv \sqrt{(E_{\rm beam}^*)^2 - (p_{\rm B}^*)^2}$$

• 2D fitting method to ΔE -M_{bc} (unbinned extended maximum likelihood) fit region :

 $(-0.3 \text{ GeV} < \Delta E < 0.3 \text{ GeV}) \&\& (5.2 \text{ GeV}/c^2 < M_{bc} < 5.29 \text{ GeV}/c^2)$

Background Rejection

Continuum : separate BB (spherical) from continuum (jet-like) using a likelihood derived from event shape variables and B direction.
 => removes 91% continuum while retaining 76% of signal.

 b→c peaking backgrounds (D⁰π⁰,D⁰η) are removed by the D⁰ veto (neutral mode) (1.842< M(φKs)<1.878 GeV)

• Nonresonant $K^+K^-K\gamma$ is determined to be 13% of the signal using the ϕ mass sideband in data [1.05-1.3 GeV]

Efficiency : (15.3±0.1)% for charged and (10.0±0.1)% neutral mode

The neutral mode has now enough statistics for a time-dependent CPV study

$M(\phi \kappa)$ Mass Distribution

Preliminary!

- Background subtracted and efficiency corrected M(φK) mass distribution.
- Each yield is from fit in bins of ϕK mass.
- Re-weighted efficiency is used for branching fraction measurement.

M(φK) spectrum is different from 3-body phase-space

ICHEP, Paris, July 22-28, 2010

Himansu Sahoo - University of Hawaii

Checks for B Lifetime

Consistent with the PDG charged (1.64 ps) and neutral (1.53 ps) B lifetimes

Nonresonant K⁺K⁻K γ is included in the signal for TCPV study

Time-dependent study of $B^+ \rightarrow \phi K^+ \gamma$

Charge Asymmetry in $B^+ \rightarrow \phi K^+ \gamma$

$$A_{CP} = \frac{N(B^- \to \phi K^- \gamma) - N(B^+ \to \phi K^+ \gamma)}{N(B^- \to \phi K^- \gamma) + N(B^+ \to \phi K^+ \gamma)}$$

simultaneous fit to both B⁺ and B⁻ data samples

Preliminary!

$N(B^{-} \rightarrow \phi K^{-} \gamma)$	Ν(Β+→φΚ+γ)	Acp	Consistent with
74±13	79±13	-0.03±0.11±0.08	no CP asymmetry

$B^0 \rightarrow \phi K_s \gamma$ CP fit results (New!)

Preliminary!

 $S = 0.74^{+0.32}_{-0.45}$ (stat) $A = 0.35 \pm 0.45$ (stat)

(The stat errors are from Minos)

$B^0 \rightarrow \phi K_s \gamma$ CP fit results (New!)

72 M BB **Preliminary**!

48% of total events

Statistics Issues

- Due to low statistics and a special signal event (good-tagged, r~0.96), the error on S has a probability of 0.6%.
- We use the ±68% CL's from the residual distributions of the toy pesudo-experiments as statistical errors.
 [PRD 68, 012001 (2003)]
- We also found a bias due to low statistics (35 signal events) and include it in the systematics.
- MC simulations show that this bias significantly reduces with increase in statistics (with twice the signal, it decreases to 0.04)

Very Preliminary!

$$S = 0.74^{+0.72}_{-1.05} (stat) ^{+0.10}_{-0.24} (syst)$$

 $A = 0.35 \pm 0.58 (stat) ^{+0.23}_{-0.10} (syst)$

TCPV Radiative Summary

 $B^0 \rightarrow K_s \phi \gamma$

$$S = 0.74^{+0.72}_{-1.05} \, {}^{+0.10}_{-0.24}$$

 $C = -A = -0.35 \pm 0.58 + 0.23$

Only weak constraints on RH current with the present statistics.

Conclusion

 \mathcal{J} First observation of $B^0 \rightarrow \varphi K_s \gamma$ signal with 5.4 significance.

The measured M(\phiK) distribution significantly differs from a three body phase-space decay.

 \mathcal{J} First measurement of time-dependent CP violation in $B^0 \rightarrow \phi K_s \gamma$ (New!)

Results are consistent with the SM expectation. No evidence so far for new physics from RH currents with the present statistics.

Meed more data to test any NP scenario (Super B factory)

BACK UP

Systematic Errors

 $B^0 \rightarrow \phi K_s \gamma$

Parameter	$\Delta S_{\phi K_S^0 \gamma}$	$\Delta A_{\phi K_S^0 \gamma}$
Vertexing	0.08	0.04
ResolutionFunction	0.02	0.03
WrongTagFraction	0.01	0.01
PhysicsParameter	0.05	0.03
PDFShape	0.01	0.01
SignalFraction	0.03	0.07
BackgroundDTShape	0.01	0.02
FitBias	0.00/-0.22	+0.21/0.00
TSI	0.00	0.03
Total	0.10/-0.24	0.23/0.10

φ Mass Sideband

- The nonresonant $K^+K^-K\gamma$ peaks in both ΔE and M_{bc} signal region, but flat in the ϕ mass.
- This component is estimated to be 13% using φ sideband in data [1.05-1.3 GeV]and subtracted from the $\varphi K \gamma$ signal.

TCPV in $B \rightarrow K_s \pi^0 \gamma$

Reconstruction is in $B \rightarrow K^* (\rightarrow Ks\pi^0) \gamma$

and also in full range of M(K_S π^0) : $M_{K\pi} < 1.8 \text{GeV}$

Reconstructed variables:

Energy difference : $\Delta E = E_B^{\text{c.m.s.}} - E_{\text{beam}}^{\text{c.m.s.}}$

Beam-energy constrained mass :

$$M_{\rm bc} \equiv \sqrt{(E_{\rm beam}^{\rm c.m.s.})^2 - (p_B^{\rm c.m.s.})^2},$$

 $[0.8 < M(Ks\pi^0) < 1.0 \text{ GeV}]$

Signal extraction : ΔE -M_{bc} 2D fit

Signal region :

 $-0.2 \text{GeV} < \Delta E < 0.1 \text{GeV}$ $5.27 \text{GeV}/c^2 < M_{\text{bc}} < 5.29 \text{GeV}/c^2$

TCPV to the events in the signal-box

TCPV in $B \rightarrow K_s \rho^0 \gamma$

657 M $B\overline{B}$ **PRL 101, 251601 (2008)**

=>Vertex is from $\rho^0 \rightarrow \pi^+\pi^-$ (no K_S vertex is needed) B $\rightarrow K_S \rho^0 \gamma$ candidates are selected from $K_S \pi^+\pi^- \gamma$ sample :

 $M(\pi^+\pi^-)$ invariant mass is required to be consistent with a ρ^0 meson. $0.6 < M(\pi^+\pi^-) < 0.9 \text{ GeV/c}^2$

contributions from other modes : $B \rightarrow K^{*+}\pi^-\gamma$

Signal Extraction : using M_{bc} distribution $-0.1 < \Delta E < 0.08 GeV$

Effective CP violation parameters are measured and corrected for the dilution.

Effective CP violation parameters in the ρ^0 region : for M(K_S $\pi^+\pi^-$) < 1.8 GeV and 0.6<M($\pi^+\pi^-$)<0.9 GeV/c²

 $S_{\rm eff} = 0.09 \pm 0.27^{+0.04}_{-0.07}$

 $A_{\rm eff} = 0.05 \pm 0.18 \pm 0.06$

dilution due to $\mathcal{B}(B \to K^{*+}\pi^{-}\gamma)$ (not self-

conjugate)

 $\mathcal{D} = 0.83^{+0.19}_{-0.03}$

 $S_{K_{S}\rho^{0}\gamma} = 0.11 \pm 0.33(\text{stat})^{+0.05}_{-0.09}(\text{syst})$

N_sig = (212±17) events

==> consistent with the SM expectation.

$B^0 \rightarrow \phi K_s \gamma$ CP fit results (New!)

772 M BB Preliminary!

Good tagged events (r>0.5) 48% of total events

$$S = 0.74^{+0.32}_{-0.45}$$
 (stat)
A= 0.35±0.45 (stat)

(The stat errors are from Minos)