Studies of Radiative Decays and Search for X(3872) at BABAR

Arafat Gabareen Mokhtar SLAC National Accelerator Laboratory On behalf the *BABAR* Collaboration

35th International Conference on High Energy Physics Paris, July 22nd-28th, 2010

Outline

• Search for $\xi(2230)$ @ BABAR (NEW: Submitted to PRL <u>hep-ex/1007.3526</u>)

• Evidence for X(3872)→J/ψω (<u>*PRD 82, 011101 (2010)</u>*)</u>

The ξ(2230)

- Mark-III Collaboration reported a narrow resonance in radiative J/ψ decays (m~2230 MeV/c²; Γ~20 MeV; Significance 3.6σ-4.5σ)
- MIS ITEP Collaboration claimed observation of $\xi(2230)$ in $\pi^- p \rightarrow K^0_{\ S} K^0_{\ S} n$ (Pos HEP2005, 083 (2006))
- Crystal Barrel Collaboration did not observe it in $p\overline{p} \rightarrow \pi^0 \pi^0$, $\pi^0 \eta$ (PLB 520, 175 (2001))
- BES could not confirm or refute the existence of ξ(2230) (PRL 76, 3502 (1996) & PRL 81, 1179 (1998))
- Lattice QCD: resonance with mass ~2.2 GeV/c² for the ground state tensor 2⁺⁺ glueball (PRD 69, 076003 (2004) & PRD 56, 4043 (1997))

Search for the $\xi(2230)$ @ BABARhep-ex/1007.3526

- <u>**BABAR searched</u></u> for \xi(2230) in the decay e^+e^- \rightarrow \gamma_{ISR} J/\psi, J/\psi \rightarrow \gamma \xi(2230), \xi(2230) \rightarrow KK, using <u>460/fb</u> of data (425 (35) /fb @ \sqrt{s}=10.54 (10.5) \text{ GeV})</u>**
- The dataset contains $(16.4\pm0.3)\times10^6$ J/ ψ decays
- The J/ψ and K_{S}^{0} masses are constrained to the PDG values
- Selection criteria:
 - ✓ E γ >300 MeV & Veto events with π^0 candidates
 - \checkmark Events with two tracks only
 - ✓ P(K)>1.35 GeV/c to suppress events of J/ ψ →K*(892)K, K*(892)→K π
 - ✓ Helicity angle of each Kaon $|\cos\theta_h K| < 0.7$
- γKK mass resolution is 6 (8) MeV/c² for the neutral and the charged modes
- Number of selected events:

	γ K + K -	$\gamma K^0{}_S K^0{}_S$
γ_{IRS} detected	~1000	~80
γ_{IRS} not detected	~1300	~100

Search for the $\xi(2230)$ @ BABAR

hep-ex/1007.3526

Search for the $\xi(2230)$ @ BABAR

- Contributions from $J/\psi \rightarrow \gamma f2(1270)$, $\gamma f'_2(1525)$, $\gamma f_0(1710)$, $K^*(892)K$ are obtained
- Signal: **BW** convolved with resolution
- Background: Second order Chebychev polynomial
- **No evidence** for $\xi(2230)$ was observed
- Branching fractions (BF's) vary with the spin and helicity hypothesis
- Obtained branching fraction upper limits:
 - ★ BF(J/ψ→γξ)×BF(ξ→K⁺K⁻)< 3.6×10^{-5} @ 90% C.L. (J=2; h=±1)
 - ★ BF(J/ψ→γξ)×BF(ξ→ $K^0_SK^0_S$)<2.9×10 -5 @ 90% C.L. (J=2; h=0)
- **BABAR** upper limits BF's are **below** the **Mark-III** values
- <u>Only</u> J=2 & h=0 is <u>compatible</u> with the BES results

The X(*3872*)

- X(3872): first new charmonium-like state discovered at the B-factories by Belle in B \rightarrow XK, X \rightarrow J/ $\psi\pi^+\pi^-$
- Confirmation from: CDF, D0, & BABAR
- <u>So far</u>, the X is the only new charmonium-like state observed with more than one decay mode: $X \rightarrow J/\psi\gamma$, $X \rightarrow \psi(2S)\gamma$, $X \rightarrow D^0 \overline{D}^{0*}$, and $J/\psi \pi^+ \pi^-$ (assuming different X, Y, and Z states)
- The decay modes: $X \rightarrow J/\psi\gamma \& X \rightarrow \psi(2S)\gamma \rightarrow C=+1$
- No charged partner for the X \rightarrow I=0
- J^P for the X was studied by Belle & CDF using $X \rightarrow J/\psi \pi^+\pi^-$; CDF showed that couldn't distinguish between 1⁺ and 2⁻

The Method

- We use the same selection criteria used in the previous BABAR analysis (<u>PRL 101</u>, <u>082001 (2008)</u>), <u>except</u> that on the lowermass limit of the ω signal region
- Fit m_{ES} in intervals of variable of interest to extract the B-related signal (after ΔE requirement)

$$m_{ES} = \sqrt{\left(\frac{\frac{s}{2} + \vec{P}_{e^+e^-} \cdot \vec{P}_B}{E_{e^+e^-}}\right)^2 - \vec{P}_B^2} \sim m_B$$
$$\Delta E = E_B^* - \frac{\sqrt{s}}{2}$$

• The data (signal yields) are corrected for efficiency and K^0 branching fractions to perform a simultaneous fit to the B⁺ and B⁰ distributions^{*} of m_{J/w0}

* The use of charge conjugate reactions is implied throughout

Fitting the Efficiency Corrected Data

PRD 82, 011101 (2010)

X(3872) : Gaussian function (resolution)

<u>Y(3940)</u>: Breit-Wigner function for the × phase space

<u>Nonresonant</u>: phase-space × Gaussian function × $m_{J/\psi\omega}$

Good fits are obtained

Fit Results

Fit Parameter	Value
$m_X(GeV/c^2)$	$3873.0_{-1.6}^{+1.8}$ (stat) ± 1.3 (syst)
$m_{\gamma} (GeV/c^2)$	$3919.1_{-3.4}^{+3.8}$ (stat) ± 2.0 (syst)
$\Gamma_{\rm Y}({ m MeV})$	$31_{-8}^{+10}(\text{stat}) \pm 5(\text{syst})$
Gaussian μ (GeV/c ²)	4435_{-30}^{+35} (stat)
Gaussian σ (GeV/c ²)	356_{-38}^{+35} (stat)
N_{X}^{+} (N_{X}^{0})	21 \pm 7 (6 \pm 3(stat))
N^+_{Y} (N^0_{Y})	$108_{-23}^{+25}(\text{stat}) (19\pm8(\text{stat}))$
N^+_{BKG} (N^0_{BKG})	$992 \pm 46(stat) (155 \pm 18(stat))$
$R_{X} = N_{X}^{0} / N_{X}^{+}$	$1.0_{-0.6}^{+0.8}(\text{stat})_{-0.2}^{+0.1}(\text{syst})$
$R_{Y} = N_{Y}^{0} / N_{Y}^{+}$	$0.7_{-0.3}^{+0.4}$ (stat) ± 0.1 (syst)
$R_{BKG} = N_{BKG}^0 / N_{BKG}^+$	0.7 ± 0.1 (stat) ± 0.1 (syst)

Uncorrected Data in the X(3872) Region

$m_{3\pi}$ for the X(3872)

PRD 82, 011101 (2010)

Dalitz-Plot Weighting Technique

PRD 82, 011101 (2010)

Each event is given 3π in the ω region 3π in the η region weight of (5/2)(1-Events/2 MeV/c² Events/2 MeV/c² 10028±6 evts 152±20 evts $3\cos^2\theta_h$), where θ_h is the 10 $B^+ \rightarrow J/\psi \pi^+ \pi^- \pi^0 K^+$ Non-weighted angle between the π^+ and π^0 in the $\pi^+\pi^-$ rest frame Non-weighted Events/2 MeV/c² Events/2 MeV/c² 27±10 evts -1±42 evts Non- ω events projected 44 away -10 -50 weighted weighted h) 5.26 5.28 $5.\overline{2}$ 5.26 5.28 5 22 5.24 5.3 5 22 5.2 $m_{ES} (GeV/c^2)$ $m_{FS} (GeV/c^2)$

Branching Fractions

Process	Branching Fraction (BF)	
$B^+ \rightarrow XK^+, X \rightarrow J/\psi\omega$	$[0.6\pm0.2(stat)\pm0.1(syst)]\times10^{-5}$	
$B^0 \rightarrow XK^0, X \rightarrow J/\psi \omega$	$[0.6\pm0.3(stat)\pm0.1(syst)]\times10^{-5}$	
$B^+ \rightarrow YK^+, Y \rightarrow J/\psi\omega$	$[3.0_{-0.6}^{+0.7}(\text{stat})_{-0.3}^{+0.5}(\text{syst})] \times 10^{-5}$	
$B^0 \rightarrow YK^0, Y \rightarrow J/\psi\omega$	$[2.1\pm0.9(stat)\pm0.3(syst)]\times10^{-5}$	
$B^+ \rightarrow J/\psi \omega K^+$	$[3.2\pm0.1(stat)_{-0.3}+^{0.6}(syst)]\times10^{-4}$	
$B^0 \rightarrow J/\psi \omega K^0$	$[2.3\pm0.3(stat)\pm0.3(syst)]\times10^{-4}$	
$BR = \frac{BF(X \to J/\psi\omega)}{BF(X \to J/\psi\pi\pi)} = 0.7 \pm 0.3 (B^+)$		
$BR = \frac{BF(X \to BF(X \to BF(X \to AF)))}{BF(X \to AF)}$	$\frac{J/\psi\omega}{J/\psi\pi\pi} = 1.7 \pm 1.3 (B^0)$	
BABAR average:	0.8 \pm 0.3 Belle:1.0 \pm 0.4 \pm 0.3 <u>hep-ex/0505037</u>	

Summary

- **BABAR** searched for $\xi(2230)$ using the full dataset; <u>No</u> <u>evidence</u> for $\xi(2230) \rightarrow KK$ has been found
- **BABAR** <u>updated</u> the Y(3940) parameters (mass, width, & BF's)
- **BABAR** reported an <u>evidence</u> for the decay mode $X(3872) \rightarrow J/\psi\omega$ (4.0 σ significance)
- The <u>*P-wave*</u> hypothesis for the X(3872) decay describes the data better than the S-wave
- \rightarrow X(3872) is more <u>*likely*</u> to have <u>J^P=2</u>⁻ than J^P=1⁺ state \rightarrow consistent with charmonium $\eta_{c2}(1D)$ interpretation

Backup slides

Clear m_{ES} signals in both B⁺ and B⁰ with ~1160 and ~210 signal events, respectively

Selection Criteria

Selection Category	Criterion
$J/\psi \rightarrow \mu\mu \text{ mass } (\text{GeV}/\text{c}^2)$	3.06 <m<sub>µµ<3.14</m<sub>
$J/\psi \rightarrow ee mass (GeV/c^2)$	2.95 <m<sub>ee<3.14</m<sub>
π^0 mass (GeV/c ²)	0.115 <m<sub>yy<0.150</m<sub>
ΔE (GeV)	$ \Delta E \le 0.015 (B^+); \Delta E \le 0.020 (B^0)$
B-helicity angle	$ \cos\theta_{\rm B} \leq 0.9$
Photon helicity angle $ heta\gamma$	$\cos\theta\gamma < 0.95$
$\psi(2S)$ veto (GeV/c ²)	3.661 <m<sub>J/ψππ<3.711</m<sub>
$m_{ES} (GeV/c^2)$	5.274 – 5.284 (signal box), >5.2 for fits

Comparison: Old and New Analysis

Bias in the Fitting Procedure?

Events Around the X(3872)

Systematic Uncertainties

- Embedding X(3872) signal in background Toys
- Tracking, PID, Neutral Efficiencies, and B-Counting
- Secondary Branching Fractions
- Uncertainties in the m_{ES} Shape parameter values
- Fitting the Uncorrected Data
- P-wave BW Vs. S-wave BW for the Y(3940)

$B \rightarrow XK, X \rightarrow D^0 \overline{D}^{*0}$

• <u>Both</u> B_AB_{AR} and Belle reported a shift in X(3872) mass in the decay mode $X \rightarrow D^0 \overline{D}^{*0} (\sim 3875)$ MeV/c²) (<u>No shift</u> in mass in the most recent analysis from Belle)

From *BABAR* and CDF: $\Delta m = 3.5 \pm 0.8 \text{ MeV/c}^2$

- The shift in $D^0\overline{D}^{*0}$ mass may be due to one unit of orbital angular momentum, as for the ω
- An explanation of the shift for $X(3872) \rightarrow D^0 \overline{D}^{*0}$ can be found in *PRL 100, 062006 (2008)*

The $X(3872) \rightarrow \psi(2S)\gamma$

- BABAR also reports evidence of $X(3872) \rightarrow \psi(2S)\gamma$ in $B^+ \rightarrow X(3872)K^+$ at 3.5σ
- $B \rightarrow \psi(2S)(K\pi)$ background is included in *MC* study

 $\frac{\mathcal{B}(X(3872) \rightarrow \psi(2S)\gamma)}{\mathcal{B}(X(3872) \rightarrow J/\psi\gamma)} = 3.4 \pm 1.4$

- Belle does <u>not confirm</u> the existence of the decay mode $X(3872) \rightarrow \gamma \psi(2S)$
- When remove the background due to $B \rightarrow \psi(2S)K^*(892)$, $K^*(892) \rightarrow K\pi 0$, the $\psi(2S)\gamma$ mass does not show any peak at the X(3872) resonance
- Belle's upper limit:

$$\frac{\mathcal{B}(X(3872) \rightarrow \psi(2S)\gamma)}{\mathcal{B}(X(3872) \rightarrow J/\psi\gamma)} < 2.1 @ 90\% \text{ C.L.}$$

BABAR: $B \rightarrow \psi(2S)(K\pi)$ background is included in MC studies

For more details see: PRL 102, 132001 (2009) & B. Fulsom UBC Thesis (SLAC-R-949)

