Observation of New Resonances Decaying to $D\pi$ and $D^*\pi$

Jose Benitez SLAC

for the BABAR Collaboration

ICHEP2010

Paris July 23, 2010

Contact: benitezj@slac.stanford.edu

The spectrum of charmed mesons

- The spectroscopy of D mesons is poorly known.
- The bound states of a c quark and an u or d quark were predicted using QCD potential models in 1985.
- Only the ground states D and D* and the narrow L=1 states are well known.
- Observations of higher states have been hindered by poor statistics and their relatively large widths.

TITTT a

С

[S. Godfrey and N. Isgur PRD 32, 189 (1985)]

Decay Properties of the Excited States

Analysis overview

 Perform an inclusive reconstruction of Dπ and D*π produced from c c events:

$$e^+e^- \to c\bar{c} \to D^{**}X \to D^{(*)}\pi X$$

X represents any additional system.

• The following channels are reconstructed:

•
$$D^{**0} \rightarrow D^+ \pi^-$$

 ${}^{\mathsf{L}} K^- \pi^+ \pi^+$

•
$$D^{**+} \rightarrow D^0 \pi^+$$

 ${}^{\scriptstyle L} K^- \pi^+$

•
$$D^{**0} \to D^{*+}\pi^{-}_{\ \ D^{0}\pi^{+}_{\ \ K^{-}\pi^{+}} \text{ or } K^{-}\pi^{+}\pi^{-}\pi^{+}}$$

• The data set consists of 454 fb⁻¹ (~590 Million $e^+e^- \rightarrow c \bar{c}$ events)

• For the known resonances we obtain **10 times** more signal events than the previous study by CDF.

$D^+\pi^-$ mass spectrum

- The known signals are modeled using Breit-Wigner functions corrected with angular momentum form and phase-space factors. Simple Breit-Wigners for the new signals.
- Resolution as well as efficiency shape corrections are applied.
- The broad $D_0(2400)$ is floated within 2σ from the known values.
- The χ^2 /NDF of the fit is140/112.

Fit results. Errors are statistical only.

Resonance	Yield $(\times 10^3)$	M (MeV/c^2)	$\Gamma (MeV/c^2)$
$D_0^*(2400)$	143.2 ± 4.7	$2338.0 \pm \ 1.0$	195.0 ± 5.9
$D_2^*(2460)$	242.8 ± 1.8	2462.2 ± 0.1	$50.5\pm~0.6$
D(2600)	26.0 ± 1.4	2608.7 ± 2.4	93 ± 6
D(2760)	11.3 ± 0.8	2763.3 ± 2.3	$60.9\pm~5.1$
			י וי ת

BaBar Preliminary

D₂*(2460)

BaBar

Events / (0.01 GeV/c²)

50000

$D^0\pi^+$ mass spectrum

- We observe similar additional signals.
- In this channel the feed-down backgrounds are stronger and the statistics of this channel are smaller so the widths of all signals are fixed to the widths measured in the D⁺π⁻.
- We obtain mass values a few MeV higher than in D⁺π⁻ consistent with being the isospin partners.
- We obtain a χ^2 /ndf=278/224.

Fit results:

Resonance	Yield $(\times 10^3)$	Mass (MeV)	Width (MeV)
$D_0^*(2400)^+$	252.4 ± 23.7	2342.0 ± 5.4	264.8 ± 16.8
$D_2^*(2460)^+$	110.8 ± 1.3	2465.4 ± 0.2	50.5
$D(2600)^+$	13.0 ± 1.3	$2621.3 \pm \ 3.7$	93
$D(2760)^+$	$5.7 \pm \ 0.7$	2769.7 ± 3.8	60.9

BaBar Preliminary

2.4

2.8

 $M(D^0\pi^+)$ GeV/c²

2.6

Events / (0.005 GeV/c²

Analysis of $D^*\pi$

Definition of the helicity variable:

- In addition to analyzing the mass spectra we extract the angular distributions in the helicity angle defined in the figure.
- In this reference frame the D*+ spin state cannot have zcomponent. As a result different values of J^P of the parent resonance are distinguished in the intensity of the signal a a function of the helicity angle.

Helicity distributions for the predicted states:

•	<i>.</i>					
Label	PDG Name	J^P	$D^*\pi$	Partial	$D^*\pi$	Helicity
$D_J^{2S+1}(nL)$			Waves		Distrib	ution
$D_1^1(1P)$	$D_1(2420)$	1^{+}	$^{\rm S,D}$		$\propto 1 + 2$	$Acos^2(\theta)$
$D_0^3(1P)$	$D_0^*(2400)$	0^{+}	-		-	
$D_1^3(1P)$	$D_1'(2430)$	1^{+}	$^{\rm S,D}$		$\propto 1 + 2$	$4cos^2(\theta)$
$D_{2}^{3}(1P)$	$D_2^*(2460)$	2^{+}	D		$\propto sin^2$	(θ)
$D_{2}^{1}(1D)$		2^{-}	P,F		$\propto 1 + 1$	$4cos^2(\theta)$
$D_1^3(1D)$		1^{-}	Р		$\propto sin^2$	(θ)
$D_{2}^{3}(1D)$		2^{-}	P,F		$\propto 1 + 2$	$Acos^2(\theta)$
$D_{3}^{3}(1D)$		3^{-}	\mathbf{F}		$\propto sin^2$	(θ)
$D_0^1(2S)$		0^{-}	Р		$\propto cos^2$	(θ)
$D_1^3(2S)$		1^{-}	Р		$\propto sin^2$	(heta)

Preliminary fit to $D^{*+}\pi^{-}$ Data

- The fit uses the same background model as in the $D^+\pi^-$ fit.
- The parameters of the D₂*(2460) are fixed from the D⁺π⁻ results.
- Two new signals, D(2600) and D(2750), are included in this preliminary fit.

Fit results:

BaBar Preliminary

Resonance	Yield $(\times 10^3)$	M (MeV)	Γ (MeV)
$D_1(2420)$	114.9 ± 0.9	2421.2 ± 0.1	30.6 ± 0.1
$D_2^*(2460)$	67.9 ± 1.3	2462.2	50.5
D(2600)	31.6 ± 6.1	2616.2 ± 2.6	115.2 ± 13.2
D(2750)	6.9 ± 0.9	2756.7 ± 2.7	54.4 ± 6.4

Problem with Preliminary Fit Model

- When we try to fit the spectrum as a function of the helicity angle the mass of the "D(2600)" peak shifts as a function of the angle.
- The other signals are stable.
- This implies this peak is composed of two signals.

Data divided as a function of the helicity angle.

Strategy to fix the preliminary model:

- Introduce another signal D(2550)
- Assume D(2600) is same as observed in D⁺π⁻ and fix the parameters.
- Apply helicity cut $|\cos\theta_{\rm H}| > 0.75$ to enhance the D(2550) and determine its parameters.

Extraction of D(2550) signal

RoBor Proliminary

- A cut requiring |cos(θ_H)|>0.75 is applied to the Data.
- We fit the spectrum now including one more signal around 2.55 GeV.
- The parameters of the D₂*(2460) and D(2600) are fixed to the ones from D⁺π⁻.

Background subtracted

D(2550)

2.6

2.8

2.4

Fit parameters

-	Dabar Fremmary					
Resonance	Yield (×10 ³)	M (MeV)	Γ (MeV)			
$D_1(2420)$	50.4 ± 0.9	2420.1 ± 0.1	31.0 ± 0.6			
$D_2^*(2460)$	73.3 ± 1.6	2462.2	50.5			
D(2550)	17.4 ± 4.5	2533.0 ± 5.5	127.6± 19.9			
D(2600)	6.9 ± 1.3	2608.7	92.9			
D(2750)	2.4 ± 0.5	2754.5 ± 4.7	64.2 ± 11.7			

New Charm Mesons at BaBar

Events / (0.005 GeV/c²

5000

4000

3000

2000

1000

3.2

 $M(D^{**}\pi^{-})$ (GeV/c²)

Final fit to $D^{*+}\pi^{-}$

- The total D*π mass distribution is fit using the final model.
- The parameters of the D₁(2420) and D(2550) are fixed to the ones found in the fit with the helicity cut.
- The parameters of the D₂*(2460) and D(2600) are constrained to the ones from the D⁺π⁻.
- We obtain final parameters for the D(2750) from this fit.

	Fit parameters		BaBar Preliminary		
	Resonance	Yield $(\times 10^3)$	M (MeV)	Γ (MeV)	
	$D_1(2420)$	108.4 ± 0.9	2420.1	31.0	
	$D_2^*(2460)$	73.3 ± 1.6	2462.2	50.5	
	D(2550)	47.0 ± 5.7	2533.0	127.6	
	D(2600)	$39.7\pm$ 1.3	2619.0	92.9	
\langle	D(2750)	14.5 ± 1.8	2747.7 ± 2.5	83.9 ± 8.9	

Helicity distributions:

- The helicity distribution for the known resonances D₁(2420) and D₂*(2460) are as expected for their J^P values.
- For the signal D(2550) a cos²(θ_H) distribution is obtained consistent with the radial excitation of the D⁰
- For the signal D(2600) a sin²(θ_H) is obtained consistent with the radial excitation of the D^{*0}
- For the signal D(2750) the distribution is not simple. This can be consistent with being a composite peak; the L=2 states are candidates.

9000

8000

7000

6000

5000

4000

3000

2000

1000

0.8

 $\cos\theta_{u}$

Yield/

№12000

Yield/

8000

6000

4000

2000

01

D(2550)

 $Y \propto \cos^2(\theta_u)$

χ²/NDF=5/9

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6

Overview of Results

BaBar Preliminary

- These results fill important gaps in the knowledge of excited D meson states.
- The signals observed in this analysis are shown in the plot and are qualitatively consistent with the predictions.

Summary and Conclusions

- We have analyzed the inclusive final states $D^+\pi^-$, $D^0\pi^+$, and $D^{*+}\pi^-$ in search for unobserved excited D mesons.
- In D⁺ π^- we find two new signals with masses at about 2610 MeV/c² and 2760 MeV/c². The isospin partner signals are confirmed in D⁰ π^+ .
- In D^{*+} π^- we find three new signals at about 2530 MeV/c², 2610 MeV/c² and 2750 MeV/c². We assume the signal at 2610 MeV is the same as in D⁺ π^- .
- The helicity distributions indicate that the signal at 2530 MeV may be identified as the radial excitation of the D⁰. Similarly, the signal at 2610 MeV may be identified as the radial excitation of the D^{*0}. Finally, the helicity distribution of the signal at 2750 GeV indicates this signal may be composite, with the L=2 excitations being the most likely candidates.
- The mass values are similar to the predicted states.

Back-up Slides

Reconstruction and Selection

For all final states:

- Apply PID requirements on the tracks.
- □Apply a vertex fit to the tracks requiring to originate from the e⁺e⁻ interaction region.
- □Require the c.m. momentum of the $D^{(*)}\pi$ to be greater than 3 GeV.
- □Require $cos(\theta_{\pi}) > -0.8$ to remove π 's from opposite jet.

■ For D+π⁻:

- □Require |m(D⁺) -1.8686 GeV| < 2.5σ
- Require D⁺ Flight significance > 0.

- For D⁰π⁺:

□Require |m(D⁰) -1.8648 GeV| < 2.5σ

Require cosine of the angle between K and D⁰ direction > -0.9

```
□Veto D<sup>*+</sup>→D<sup>0</sup>\pi^+ and D<sup>*0</sup>→D<sup>0</sup>\pi^0
```

For D*+π⁻:

■Require |m(D⁰)-1.8648 GeV|< 30 MeV
 ■Require |∆m-145.4 MeV| < 2 MeV

Current Knowledge of Excited States

The narrow L=1 states have been observed with largest statistics by CDF.

[CDF Collab. PRD 73, 051104 (2006)]

 The wide L=1 states have been measured in *B* decays by BaBar and Belle.

> [Belle Collab. PRD 69, 112002 (2004)] [BaBar Collab. PRD 79, 112004 (2009)]

PDG Name	J^P	$D\pi$ Partial	$D^*\pi$ Partial	Expected	Observed	Observed
		Waves	Waves	Mass (GeV)	Mass (MeV)	Width (MeV)
$D_1(2420)$	1+	-	S,D	2.420	2422 ± 2	20 ± 2
$D_0^*(2400)$	0^{+}	S	-	2.380	2297 ± 21	273 ± 50
$D_1'(2430)$	1^{+}	-	S,D	2.469	2427 ± 30	380 ± 100
$D_2^*(2460)$	2^{+}	D	D	2.479	2460.4 ± 2.5	41.8 ± 3.8

Reconstruction Efficiency

 Truth-matched signal Monte Carlo (MC) is used to determine the efficiency and resolution as a function of M(D⁺π⁻)

Mass Resolution

- The signal MC is divided in bins of 25 MeV and for each sample we determine the resolution.
- The resolution degrades as a function of $M(D^+\pi^-)$.

Generic MC Simulation

- The generic MC contains all of the known L=1 resonances: $D_1(2420)$, $D_2(2460)$, $D_0(2400)$, and $D_1(2430)$.
- Besides the signals D₂(2460) and D₀(2400) there is feed-down from D₁(2420), D₂(2460), D₁(2430) decaying to D^{*+}π⁻ where the D^{*+} decays to D⁺π⁰ and the π⁰ is not reconstructed.
- The broad resonances contain an artificial mass cut-off at about 2.6 GeV.

Background Model

- We model the smooth background using an exponential function and a threshold factor.
- The background model is tested using the MC and wrong-sign (D⁺π⁺) samples.
- The fit to the wrong-sign Data sample shows non-flat residuals. This residual shape is used to estimate the systematic error.

$$F_B(x) \propto P(x) \begin{cases} e^{c_1 x + c_2 x^2} & \text{for } x < x_0 \\ e^{d_0 + d_1 x + d_2 x^2} & \text{for } x > x_0 \end{cases}$$

$$P(x) \equiv \frac{1}{2x} \sqrt{[x^2 - (m_{D^+} + m_{\pi})^2][x^2 - (m_{D^+} - m_{\pi})^2]}$$

Fit to the Generic MC

- A binned fit is performed in the mass range starting about 30 MeV above threshold. The behavior near threshold is very hard to model.
- The the fitted parameters are in good agreement with the true values.

Fit results. Errors are statistical only .

Resonance	Yield $(\times 10^3)$	M (MeV)	Γ (MeV)	Generated	Generated	Generated
				Yield $(\times 10^3)$	M (MeV)	Γ (MeV)
$D_2^*(2460)$	173.9 ± 3.1	2458.5 ± 0.1	30.8 ± 0.6	188.8 ←	2459.0	30.0
$D_0^*(2400)$	228.2 ± 16.6	2308.0 ± 0.0	276.0 ± 0.0	246.8	2308.0	276.0
$D_1(2420)_{Feed}$	30.4 ± 1.3	2422.0 ± 0.0	19.0 ± 0.0	30.7	2422.0	19.0
$D_2^*(2460)_{Feed}$	18.4 ± 1.8	2458.5 ± 0.1	30.8 ± 0.6	Included above	2459.0	30.0

$D^+\pi^-$ Reconstructed Data

- The D⁺ π ⁻ Data shows both the feed-down and signal D₂(2460).
- Two additional enhancements are observed at ~2.6 GeV and ~2.75 GeV.
- We checked D⁺ sideband data to make sure that the additional enhancements are due to true D⁺.

New Charm Mesons at BaBar

Jose Benitez

Fit to $D^*\pi$ with $|\cos\theta_H| < 0.5$

- The complimentary fit with $|\cos\theta_{H}| < 0.5$ is performed.
- In this fit the signals with natural spin-parity are enhanced.

Extraction of the helicity distributions:

- The Data is now divided in bins of 0.2 as a function of the helicity angle.
- A fit is performed in each bin while fixing the mass and width parameters to their final values.
- Only the yield for each signal is allowed to float.

Summary of parameters

TABLE I: Summary of the results. The first errors are statistical and the second are systematic; "fixed" indicates the parameters were fixed to the values from Fit A or C. The significance is defined as the yield divided by the total error.

$\operatorname{Resonance}$	Channel(Fit)	Efficiency (%)	${\bf Yield} \ ({\bf x}10^3)$	Mass MeV/c^2	${ m Width} \ { m MeV}/c^2$	Significance
$D_1(2420)^0$	$D^{*+}\pi^{-}$ (C)		$50.4 \pm 0.9 \pm 1.3$	$2420.1 \pm 0.1 \pm 0.8$	$31.0 \pm 0.6 \pm 1.1$	
	$D^{*+}\pi^{-}$ (E)	1.09 ± 0.03	$108.4 \pm 0.9 \pm 2.2$	2420.1(fixed)	31.0(fixed)	
$D_2^*(2460)^0$	$D^{+}\pi^{-}(A)$	1.29 ± 0.03	$242.8 \pm 1.8 \pm 3.4$	$2462.2 \pm 0.1 \pm 0.8$	$50.5 \pm 0.6 \pm 0.7$	
	$D^{*+}\pi^{-}(E)$	1.11 ± 0.04	$73.3 \pm 1.6 \pm 4.6$	2462.2(fixed)	50.5(fixed)	
$D(2550)^{0}$	$D^{*+}\pi^{-}$ (C)		$17.4 \pm 4.5 \pm 5.6$	$2533.0 \pm 5.5 \pm 8.3$	$128 \pm 20 \pm 13$	2.4σ
	$D^{*+}\pi^{-}$ (E)	1.14 ± 0.04	$47\pm 6\pm 32$	2533.0(fixed)	128(fixed)	
$D(2600)^{0}$	$D^{+}\pi^{-}(A)$	1.35 ± 0.05	$26.0 \pm 1.4 \pm 6.6$	$2608.7 \pm 2.4 \pm 2.5$	$93\pm 6\pm 13$	3.9σ
	$D^{*+}\pi^{-}$ (D)		$31.6 \pm 0.9 \pm 5.3$	2608.7(fixed)	93(fixed)	5.9σ
	$D^{*+}\pi^{-}(E)$	1.18 ± 0.05	$40 \pm 1 \pm 13$	2608.7(fixed)	93(fixed)	
$D(2750)^{0}$	$D^{*+}\pi^{-}(E)$	1.24 ± 0.07	$14.5 \pm 1.8 \pm 3.3$	$2747.7 \pm 2.5 \pm 4.5$	$84 \pm 9 \pm 11$	3.8σ
$D(2760)^{0}$	$D^{+}\pi^{-}(A)$	1.41 ± 0.09	$11.3 \pm 0.8 \pm 1.0$	$2763.3 \pm 2.3 \pm 2.3$	$60.9 \pm 5.1 \pm 3.6$	8.9σ
$D_2^*(2460)^+$	$D^0\pi^+$ (B)		$110.8 \pm 1.3 \pm 7.5$	$2465.4 \pm 0.2 \pm 1.1$	50.5(fixed)	
$D(2600)^+$	$D^0\pi^+$ (B)		$13.0 \pm 1.3 \pm 4.5$	$2621.3 \pm 3.7 \pm 4.2$	93(fixed)	2.8σ
$D(2760)^+$	$D^{0}\pi^{+}$ (B)		$5.7 \pm 0.7 \pm 1.5$	$2769.7 \pm 3.8 \pm 1.5$	60.9(fixed)	3.5σ