Evidence for Prompt Photon Production in *pp* Collisions at $\sqrt{s} = 7$ TeV with the ATLAS Detector

Junji Tojo KEK On behalf of the ATLAS Collaboration

ICHEP2010 22-28th July 2010

Paris

Prompt Photons at Hadron Colliders

- Importance of prompt photon production at Hadron colliders
 - A testing ground of perturbative Quantum Chromodynamics (pQCD)

- Constraint of gluon parton distribution function (PDF)
- High $\mathbf{p}_{\mathbf{T}}$ photon identification : important signals for many search physics, e.g. : Higgs boson : $H \to \gamma \gamma$ SUSY : $\tilde{\chi}_0^{\ l} \to \tilde{G} \gamma$ in Gauge-mediated SUSY breaking model Exotics : $G \to \gamma \gamma$ (graviton decay), $f^* \to f \gamma$ (excited fermion decay)
- Difficulty in extraction of prompt photons
 - Backgrounds of photons from hadron decays (dominated by π^0 and η), which fake prompt photons
 - Isolation of photons helps extracting signals.
 - Prompt photons can be studied with a modest integrated luminosity, since cross section at $\sqrt{s} = 7$ TeV is of $O(\mu b)$.

Theoretical Calculation of Prompt Photon Cross Section

- NLO pQCD calculation with JETPHOX program
- **S**. Catani *et. al.*, JHEP05, 028 (2002).
- <u>http://lappweb.in2p3.fr/lapth/PHOX_FAMIL</u> <u>Y/jetphox_soon.html</u>
 - PDF : CTEQ6.1
 - Systematic uncertainties
 - PDF, Renormalization and factorization scale
- "Prompt" photons include photons from :
 - Hard scattering sub-processes
 - QED radiation off quarks
 - Quark/gluon fragmentation

- Cuts applied in JETPHOX calculation
 - $E_{\rm T} > 10 {\rm ~GeV}$
 - |η| < 1.37, 1.52 <|η|< 2.37
 (Better photon identification performance in EM calorimeter)
 - Isolation : E_T (parton, $\Delta R < 0.4$) < 5 GeV

The ATLAS Detector

The ATLAS Detector

LAr/Pb sampling calorimeter w/ accordion geometry

- 3 longitudinal layers with cell of

 $\Delta \eta \times \Delta \phi$: (0.003-0.006) × 0.1 (1st layer), 0.025 × 0.025 (2nd layer), 0.050 × 0.025 (3rd layer)

- Presampler w/ cell $\Delta\eta \times \Delta\phi \sim 0.025 \times 0.1 in |\eta| < 1.52, 1.5 < |\eta| < 1.8$

- $\sigma(E)/E = (10-17\%) (\eta) / \sqrt{E} (GeV) \oplus 0.7 \%$

Inner Detector (ID) in 2 T solenoidal B-field

- Pixel : 3 barrels + 2 x 3 disks
 - $\sigma_{r\phi} \sim 10 \ \mu m, \sigma_z \sim 115 \ \mu m$
- SCT: 4 barrels + 2 x 9 disks
 - $\sigma_{r\phi} \sim 17 \ \mu m, \ \sigma_z \sim 580 \ \mu m$
- TRT: 73 layers (barrel) + 2 x 160 layers (endcap) $\sigma_{r\phi} \sim 130 \ \mu m$ (barrel)

5

Data and MC Samples

<u>Data</u>

- Trigger : L1 calorimeter trigger
 - Granularity : $\Delta \eta \times \Delta \phi = 0.1 \times 0.1$ separately for EM and hadronic compartment
 - EM cluster in $\Delta \eta \times \Delta \phi = 0.2 \times 0.2$ window
 - $E_T > 5 \text{ GeV on } \Delta \eta \times \Delta \phi = 0.1 \times 0.2$ or 0.2×0.1
- Primary vertex requirement
 - Primary vertex consistent with the beam spot position
 - At least 3 tracks, associated to the primary vertex
- Integrated luminosity :

 $15.8 \pm 1.7 \text{ nb}^{-1}$

• Total number of events : 2.27M events

<u>MC</u>

- PYTHIA with "ATLAS MC09 tune"
- Full simulation with GEANT4
- Full emulation of the trigger and the same L1 trigger requirement as data
- Signal
 - Sub-process : $qg \rightarrow \gamma q + q\overline{q} \rightarrow \gamma g$
 - $p_T > 7 \text{ GeV}/c$ in hard scattering
- Backgrounds
 - Non-diffractive minimum bias (MB)
 - All relevant QCD sub-processes (QCD)

□ Including signal sub-processes

 \square p_T > 15 GeV/*c* in hard scattering

- A filter mimicking L1 calorimeter trigger in event generation :
- $E_{T}(\Delta\eta \times \Delta\phi < 0.18 \times 0.18) > E_{T}(\text{threshold})$
 - $\square E_{T}(\text{threshold}) = 6 \text{ GeV for MB}$

 $\Box E_{\rm T}(\text{threshold}) = 17 \text{ GeV for QCD}$

Photon Identification

- Seed by a cluster in EM calorimeter with 3 × 5 cells in 2nd layer
- Track-cluster matching
- \rightarrow No matched track : unconverted γ
- \rightarrow Matched to track(s) from γ conversion in ID : 10² converted γ
- Energy : determined with EM calorimeter
- Energy calibration : unconverted/converted γ separately
- Pre-selection for better γ identification
 - $|\eta| < 1.37, 1.52 < \!\!|\eta| \! < 2.37$
 - Non-overlap with non-working cells

```
\rightarrow 268,992 \gamma candidates in E<sub>T</sub> > 10 GeV
```


- Data/MC comparison before photon identification using shower shapes
 - **D** Dominated by fake photons
 - BG scaled to match data yield
 expected signal.

- "Loose" photon selection
- Leakage to Hadronic calorimeter
- Shower shapes in 2nd
 layer of EM calorimeter

Variable	Definition	
E_T^{had} / E_T	Ratio of E_T in hadronic calorimeter to E_T in cluster	
R_{η}	$E_{3\times7}/E_{7\times7}$	
R_{ϕ}	$E_{3\times3} / E_{3\times7}$	
$w_{\eta 2}$	RMS width of energy distribution in η	

- Data/MC comparison
 - □ Without loose selection (after pre-selection)
 - □ BG scaled to match data yield expected signal.

π^0 candidate passing "loose", failing "tight" selection

Photon candidate passing "tight" selection

"Tight" photon selection

Entries/0.02

Entries/0.025

- Applied in addition to "loose" selection
- Shower shapes in 1st layer_{10³} of EM calorimeter

Variable	Definition
W _{stot}	RMS width of energy distribution in η
E _{ratio}	Asymmetry between 1^{st} and 2^{nd} maxima in η energy profile
ΔΕ	Energy difference between 2 nd maximum and the minimum between the two maxima
F _{side}	Fraction of energy in 7 cells centered around 1 st maximum and outside 3 core cells
w _{s3}	RMS width of energy distribution in 3 core cells

- Data/MC comparison
 - □ After loose selection
 - BG scaled to match data yield expected signal.

Fside

0.9

ATLAS Preliminary

Simulation (all γ candidates)

Data 2010

Isolation

- Prompt photon signal is expected to be more isolated from hadronic activity than fake background.
- In cone of R = 0.4 in $\eta \phi$ space : $_{10^3}$ *Isolation* = E(R < 0.4; EM and HAD) $- E(5 \times 7 cells in EM)$ 10²
 - E(leak) E(UE correction)
 - E(leak) : photon energy leakage outside 5×7 cells in EM, estimated from MC
 - E(UE correction) : activity due to underlying event, estimated from data of low energy jets
- Discrimination with isolation
 - "Isolated" : Isolation < 3 GeV
 - "Non-isolated" : Isolation > 5 GeV

- Data/MC comparison
 - □ After loose selection
 - BG scaled to match data yield expected signal.

Photon Conversions

- Performance of photon conversion reconstruction
 - Photon conversions with two reconstructed tracks
 - $p_{\rm T}({\rm photon}) \ge 20 {\rm ~GeV}/c$
 - Isolation < 3 GeV</p>

Data/MC comparison
 Data and MC are normalized to unity.

Efficiency

Background Estimation and Signal Extraction

- BG estimation
 - Data driven approach using ♀
 2D-sideband background full ti subtraction
 - Isolation
 - γ ID = (E_{ratio}, Δ E, F_{side}, w_{s3})
 - Assuming

1) No correlation between Isolation and γ ID

2) No signal leakage into control regions

 $N_{sig}^{A} = N^{A} - N^{B} \times (M^{A}/M^{B})$

Correction factor for 1) and 2)
 was estimated from MC and
 was applied to the equation.

Background Estimation and Signal Extraction

- Apply 2D-sideband technique to the photons candidates
- A clear excess can be observed and is consistent with the expected shape for prompt photons from MC.

F_{side} in isolated/non-isolated region

Isolation in tight ID pass/fail region

Photon Purity and Signal Yield

- Photon purity estimated with 2Dsideband technique.
 - Prompt photon purity Clear increase with E_{T} (expected from MC)
- Systematic uncertainty in Purity for $E_T > 20 \text{ GeV}$
 - Isolation : 1 %
 - Choice of γ ID variables : 3 %
 - Signal inefficiency : 4 %
 - Signal composition : 2%
 - Correlation btw isolation and γ ID : 2 %
 - Energy scale : 1 %

E _T interval [GeV]	$10 \le \mathrm{E_T} < 15$	$15 \le E_{\rm T} < 20$	$E_{T} \ge 20$
Num of candidates	5271	1213	864
Purity [%] (±stat±syst)	$24 \pm 5 \pm 24$	$58 \pm 5 \pm 8$	$72 \pm 3 \pm 6$
Signal yield (\pm stat \pm syst)	$1289 \pm 297 \pm 1362$	$706 \pm 69 \pm 86$	$618 \pm 42 \pm 59$

Towards Prompt Photon Cross Section Measurement

- Higher integrated luminosity was made available recently.
- Data analysis towards the cross section measurement has started.
 - Tight selection
 - Isolation < 3 GeV
 - $E_{\rm T} > 15 {\rm ~GeV}$
- Consistent with the result from the low statistics data sample.

Conclusion

- From 15.8 nb⁻¹ of 7 TeV *pp* collisions collected with the ATLAS detector, we successfully extracted prompt photon signals statistically significant in $E_T > 15$ GeV.
- In $E_T > 20$ GeV, a prompt photon yield was measured to be 618 ± 72 with a purity of 72 ± 7 %.
- A measurement of the prompt photon production cross section will be performed in the next step.
- Physics studies using high p_T photons with the ATLAS detector are promising.

Reference : ATLAS-CONF-2010-077