Results from the Telescope Array Experiment

> Gordon Thomson University of Utah

> > ICHEP-2010

Telescope Array Collaboration

T Abu-Zayyad¹, R Aida², M Allen¹, R Azuma³, E Barcikowski¹, JW Belz¹, T Benno⁴, DR Bergman¹, SA Blake¹, O Brusova¹, R Cady¹, BG Cheon⁶, J Chiba⁷, M Chikawa⁴, EJ Cho⁶, LS Cho⁸, WR Cho⁸, F Cohen⁹, K Doura⁴, C Ebeling¹, H Fujii¹⁰, T Fujii¹¹, T Fukuda³, M Fukushima^{9,22}, D Gorbunov¹², W Hanlon¹, K Hayashi³, Y Hayashi¹¹, N Hayashida⁹, K Hibino¹³, K Hiyama⁹, K Honda², G Hughes⁵, T Iguchi³, D Ikeda⁹, K Ikuta², SJJ Innemee⁵, N Inoue¹⁴, T Ishii², R Ishimori³, D Ivanov⁵, S Iwamoto², CCH Jui¹, K Kadota¹⁵, F Kakimoto³, O Kalashev¹², T Kanbe², H Kang¹⁶, K Kasahara¹⁷, H Kawai¹⁸, S Kawakami¹¹, S Kawana¹⁴, E Kido⁹, BG Kim¹⁹, HB Kim⁶, JH Kim⁶, JH Kim²⁰, A Kitsugi⁹, K Kobayashi⁷, H Koers²¹, Y Kondo⁹, V Kuzmin¹², YJ Kwon⁸, JH Lim¹⁶, SI Lim¹⁹, S Machida³, K Martens²², J Martineau¹, T Matsuda¹⁰, T Matsuyama¹¹, JN Matthews¹, M Minamino¹¹, K Miyata⁷, H Miyauchi¹¹, Y Murano³, T Nakamura²³, SW Nam¹⁹, T Nonaka⁹, S Ogio¹¹, M Ohnishi⁹, H Ohoka⁹, T Okuda¹¹, A Oshima¹¹, S Ozawa¹⁷, IH Park¹⁹, D Rodriguez¹, SY Roh²⁰, G Rubtsov¹², D Ryu²⁰, H Sagawa⁹, N Sakurai⁹, LM Scott⁵, PD Shah¹, T Shibata⁹, H Shimodaira⁹, BK Shin⁶, JD Smith¹, P Sokolsky¹, TJ Sonley¹, RW Springer¹, BT Stokes⁵, SR Stratton⁵, S Suzuki¹⁰, Y Takahashi⁹, M Takeda⁹, A Taketa⁹, M Takita⁹, Y Tameda³, H Tanaka¹¹, K Tanaka²⁴, M Tanaka¹⁰, JR Thomas¹, SB Thomas¹, GB Thomson¹, P Tinyakov^{12,21}, I Tkachev¹², H Tokuno⁹, T Tomida², R Torii⁹, S Troitsky¹², Y Tsunesada³, Y Tsuyuguchi², Y Uchihori²⁵, S Udo¹³, H Ukai², B Van Klaveren¹, Y Wada¹⁴, M Wood¹, T Yamakawa⁹, Y Yamakawa⁹, H Yamaoka¹⁰, J Yang¹⁹, S Yoshida¹⁸, H Yoshii²⁶, Z Zundel¹

¹University of Utah, ²University of Yamanashi, ³Tokyo Institute of Technology, ⁴Kinki University, ⁵Rutgers University, ⁶Hanyang University, ⁷Tokyo University of Science, ⁸Yonsei University,
 ⁹Institute for Cosmic Ray Research, University of Tokyo, ¹⁰Institute of Particle and Nuclear Studies, KEK, ¹¹Osaka City University, ¹²Institute for Nuclear Research of the Russian Academy of Sciences, ¹³Kanagawa University, ¹⁴Saitama University, ¹⁵Tokyo City University, ¹⁶Pusan National University, ¹⁷Waseda University, ¹⁸Chiba University ¹⁹Ewha Womans University, ²⁰Chungnam National University, ²¹University Libre de Bruxelles, ²²University of Tokyo, ²³Kochi University, ²⁴Hiroshima City University, ²⁵National Institute of Radiological Science, Japan, ²⁶Ehime University

Outline

- Introduction
- TA Results:
 - FD mono spectrum
 - SD mono spectrum
 - Stereo composition result
 - Search for AGN correlations
- Conclusions

TA is a Hybrid Experiment

- TA is in Millard Co., Utah, 2 hours drive from SLC.
- SD: 507 scintillation counters, 1.2 km spacing, scintillator area= 3 sq. m., two layers.
- FD: 3 sites, each covers 120 az., 3 -31 elev.
- 2.5 yr (FD) and 2 yr (SD) of data have been collected.

TA Fluorescence Detectors

Typical Fluorescence Event

Monocular timing fit

Reconstructed Shower Profile

TA Surface Detector

- Powered by solar cells; radio readout.
- Self-calibration using single muons.
- In operation since March, 2008.

Typical surface detector event

2008/Jun/25 - 19:45:52.588670 UTC

Stereo and Hybrid Observation

- Many events are seen by several detectors.
 - FD mono has ~5 resolution in ψ .
 - Add SD information (hybrid reconstruction) → ~0.5 resolution.
 - Stereo FD resolution ~0.5
- Need stereo or hybrid for composition analysis.
- Independent operation so far.
- Hybrid trigger will be instituted this summer.

Triple FD Event (2008-10-26)

Fluorescence Detector (FD) Monocular Spectrum

- For FD (mono, hybrid, stereo) measurements, the aperture depends significantly on energy. → Must calculate it by Monte Carlo technique.
- This is an important part of UHECR technique, and must be done accurately.
- We use HEP methods for this purpose.

MC Method

- Simulate the data exactly as it exists.
 - Start with previously measured spectrum and composition.
 - Use Corsika/QGSJet events.
 - Throw with isotropic distribution.
 - Include atmospheric scattering.
 - Simulate trigger, front-end electronics, DAQ.
- Write out the MC events in same format as data.
- Analyze the MC with the same programs used for data.
- Test with data/MC comparison plots.
- This method works.

Rp (km)

Psi angle (deg)

Monocular Energy Spectrum from Middle Drum (MD) Detector

- 14 refurbish HiRes-1 telescopes
- TAMD mono processing is identical to HiRes-1 monocular data analysis
 - Same program set, event selection, cuts
 - Using the same "average" atmospheric model (aerosol VAOD=0.04)
- Differences
 - telescope location and
 - pointing directions
 - Thresholds (~20% lower
 - than HiRes-1)
- Preliminary MD spectrum in good agreement with HiRes.

Surface Detector (SD) Monocular Spectrum

- Must cut out SD events with bad resolution.
 Must calculate aperture by Monte Carlo technique.
- We use the same techniques for the SD that we use for FD.

List of Cuts

- chi2/ndof cut: 4.0
- Border Cut > 1200m
- Zenith Angle Cut, 45 degrees
- Pointing direction resolution: 5 degrees
- Fractional S800 uncertainty: 0.25

• 1.75 years, 6264 events.

SD Monte Carlo

- Simulate the data exactly as it exists.
 - Start with previously measured spectrum and composition.
 - Use Corsika/QGSJet events.
 - Throw with isotropic distribution.
 - Simulate trigger, front-end electronics, DAQ.
- Write out the MC events in same format as data.
- Analyze the MC with the same programs used for data.
- Test with data/MC comparison plots.

How to Use Corsika Events

- Use 10⁻⁶ thinned CORSIKA QGSJET-II proton showers that are de-thinned in order to restore information in the tail of the shower.
- De-thinning procedure is validated by comparing results with un-thinned CORSIKA showers, obtained by running CORSIKA in parallel
- We fully simulate the SD response, including actual FADC traces

Dethinning Technique

- Change each Corsika "output particle" of weight w to w particles; distribute in space and time.
- Time distribution agrees with unthinned Corsika showers.

SD Event Reconstruction

- Two fits:
 - Time fit to determine event geometry (modified Linsley function).
 - Lateral distribution fit (LDF) to determine signal size
 800m from the shower axis,
 S800 (AGASA fitting function).
- Fitting procedure and formulas are adjusted using only the data.

Fitting results

• Fitting procedures are derived solely from the data

Tiboe hiteresighall, (VEM\$igh)a

Fitting results

- Fitting procedures are derived solely from the data
- Same analysis is applied to MC
- Fit results are compared between data and MC
- MC fits the same way as the data.
- Consistency for both time fits and LDF fits.
- Corsika/QGSJet-II and data have same lateral distributions!

Data/MC Comparisons

LDF fit χ^2/dof

DATA/MC Event Direction

DATA/MC: S800, Energy

S800

Energy

First Estimate of Energy

- Energy table is constructed from the MC
- First estimation of the event energy is done by interpolating between S800 vs sec(θ) lines

Energy Scale

- Energy scale is determined more accurately by FD than by CORSIKA QGSJET-II
- Set SD energy scale to FD energy scale using well-reconstructed events seen by both detectors:
- 27% renormalization.

TA SD Resolution

- To achieve good resolution one applies quality cuts
- Correct aperture is calculated from MC which:
 - Agrees with the data
 - Analyzed in the same way as the data, including the quality cuts

TA SD Spectrum

Significance of the Suppression

- Assume no GZK cutoff and extend the broken power law fit beyond the break
- Apply this extended flux formula to the actual TASD exposure, find the number of expected events and compare it to the number of events observed in log₁₀E bins after 10^{19.8}eV bin:

$$-$$
 N_{EXPECT} $= 18.4$

$$-N_{OBSERVE} = 5$$

$$PROB = \sum_{i=0}^{5} Poisson(\mu = 18.4; i) = 2.41 \times 10^{-4}$$
(3.50)

TA SD, Middle Drum Monocular, and TA Hybrid Spectra

TA SD and HiRes Spectra

AGASA, Auger, HiRes, TA Spectra

FD Stereo Composition

- Measure x_{max} for Black Rock/Long Ridge FD stereo events
- Create simulated event set
- Apply exactly the same procedure as with the data

Data/MC Comparisons

Data/MC Comparisons (cont.)

- Data and MC show excellent agreement geometric agreement
- What about x_{max} ?

 x_{max} Data/MC comparison

x_{max} vs. Energy

• Use MC treated identically to the data to establish energy dependence

TA-FD stereo : Mass Composition

Search for AGN Correlations

- Auger found correlations with AGN's with (57 EeV, 3.1 ,0.018). 14 events scanned + 13 event test sample appeared in Science article; 2.9σ.
- Later Auger data (42, 12, 8.8) show no significant correlations.
- HiRes data (13, 2, 3) show no significant correlations.
- TA data (13 events) has 3 correlated events, 3.0 expected by chance.

Conclusions

- The Telescope Array (TA) Experiment is collecting data in the northern hemisphere.
- TA is a LARGE experiment which has excellent control of systematic uncertainties.
- SD mono, FD mono, stereo, hybrid, hybrid-stereo analyses are all ongoing.
- Important TA spectrum, composition, and anisotropy results are being presented. With more to come.
- TA is a discovery experiment.