The LHeC Conceptual Design

A status report on behalf of the LHeC Study Group

Physics Machine Organisation

Max Klein

ICHEP Paris: Future Machines and Projects 24.7.2010

http://cern.ch/lhec

Electron-proton colliders open new horizons on all three of the fundamental questions: the spectroscopy of fundamental fermions, the spectroscopy of gauge bosons, and the problem of hadron structure. In addressing these issues, the ep collider is approaching the same physics as is studied in e^+e^- and $\bar{p}p$ colliders, but in a complementary way, with emphasis on the t-channel. Each technique has its own strengths and weaknesses, which I leave you to contemplate. ChrisQuigg

FERMILAB-Conf-81/52-THY

LEP*LHC (1984, 1990) - Lausanne, Aachen E.Keil LHC project report 93 (1997) Thera (2001), QCD explorer (2003) J.Dainton et al, 2006 JINST 1 10001

LHeC at DIS conferences since Madison 2005

2007 CERN SPC and [r]ECFA 2008 Divonne I, ICFA,ECFA 2009 Divonne II, NuPECC, ECFA

2010 Divonne III, ECFA - CDR

Lepton-Proton Scattering Experiments

Tevatron/LEP/HERA (Fermiscale) \rightarrow LHC/LC/LHeC (Terascale) 100 fold increase in luminosity, in Q^2 and 1/x w.r.t. HERA

Luminosity

$$L = \frac{N_{p}\gamma}{4\pi e\varepsilon_{pn}} \cdot \frac{I_{e}}{\sqrt{\beta_{px}\beta_{py}}}$$

$$N_{p} = 1.7 \cdot 10^{11}, \varepsilon_{p} = 3.8 \,\mu m, \beta_{px(y)} = 1.8(0.5)m, \gamma = \frac{E_{p}}{M_{p}}$$

$$L = 8.2 \cdot 10^{32} cm^{-2} s^{-1} \cdot \frac{N_{p} 10^{-11}}{1.7} \cdot \frac{m}{\sqrt{\beta_{px}\beta_{py}}} \cdot \frac{I_{e}}{50mA}$$

$$I_{e} = 0.35mA \cdot P[MW] \cdot (100/E_{e}[GeV])^{4}$$

Ring-Ring

Power Limit of 100 MW wall plug "ultimate" LHC proton beam

→L = 2 10^{33} cm⁻²s⁻¹ → O(100) fb⁻¹ HERA 0.5fb⁻¹ with 100 times less L

LINAC Ring

Pulsed, 60 GeV: ~ 10^{32} High luminosity: Energy recovery: P=P₀/(1- η) β *=0.1m [5 times smaller than LHC by reduced I*, only one p squeezed and IR quads as for HL-LHC] L = 10^{33} cm⁻²s⁻¹ \rightarrow O(100) fb⁻¹

$$\begin{split} L &= \frac{1}{4\pi} \cdot \frac{N_p}{\varepsilon_p} \cdot \frac{1}{\beta^*} \cdot \gamma \cdot \frac{I_e}{e} \\ N_p &= 1.7 \cdot 10^{11}, \varepsilon_p = 3.8 \,\mu m, \beta^* = 0.2 m, \gamma = 7000 / 0.94 \\ L &= 8 \cdot 10^{31} cm^{-2} s^{-1} \cdot \frac{N_p 10^{-11}}{1.7} \cdot \frac{0.2}{\beta^* / m} \cdot \frac{I_e / mA}{1} \\ I_e &= mA \frac{P / MW}{E_e / GeV} \end{split}$$

Precision QCD and Electroweak Physics

Based on weak = electromagnetic cross sections, p, d, e^{\pm} , P_e and high precision and full acceptance

Structure functions $[F_2, F_L, xF_3^{gZ}, F_2^{gZ}; F_2^{cc}, F_2^{bb}, F_2^{ss}]$ in p/d and A Quark distributions from direct measurements and QCD fits Strong coupling constant α_s to per mille accuracy Gluon distribution in full x range to unprecedented precision Standard Model Higgs Single top and anti-top quark production at high rate (5pb) Electroweak couplings (light and heavy quarks and mixing angle) Heavy quark fragmentation functions Charm and beauty below and way beyond threshold at per cent accuracy Heavy quarks in real photon-proton collisions [LR option] Jets and QCD in photoproduction and DIS Gluon structure of the photon

Strong Coupling Constant

Simulation of α_s measurement at LHeC

α_s least known of coupling constants

Grand Unification predictions suffer from $\delta \alpha_s$

DIS tends to be lower than world average

LHeC: per mille accuracy indep. of BCDMS. Challenge to experiment and to h.o. QCD

J.Bluemlein and H. Boettcher, arXiv 1005.3013 (2010)

Single top and anti-top Production in Charged Currents

CC events for 10 fb⁻¹

New Physics at the LHeC

Divonne 08

- Lepto-Quark Production and Decay (s and t-channel effects)
- **Squarks and Gluinos** ٠

ZZ, WZ, WW elastic and inelastic collisions

- Technicolor •
- **Novel Higgs Production Mechanisms**
- **Composite electrons**
- **Lepton-Flavor Violation**
- QCD at High Density in ep and eA collisions ٠
- Odderon

LHeC Physics Overview

118

Stan Brodsky, SLAC

Broad physics goals (to be discussed at the Workshop)

- Proton structure and QCD physics in the domain of x and Q² of LHC experiments
- Small-x physics in eP and eA collisions

Maximum W < 1.4 TeV

for $E_e = 140$ GeV, $E_p = 7$ TeV

- Probing the e^{\pm} -quark system at ~TeV energy eg leptoquarks, excited e*'s, mirror e, SUSY with no R-parity.....
- Searching for new EW currents eg RH W's, G. Altarelli

effective eeqq contact interactions...

J.Bartels: Theory on low x

Beauty - MSSM Higgs

In MSSM Higgs production is b dominated

First measurements of b at HERA can be turned to precision measurement of b-df.

LHeC: higher fraction of b, larger range, smaller beam spot, better Si detectors

Low x Physics: non-linear parton evolution (ep/eA)

Based on $p/A [e^{\pm}, P_e]$ and high precision and full acceptance in forward and backward region

Unitarity and QCD Expectations from LHC Nuclear Parton Distributions New physics at low x Diffraction Vector Mesons Deeply Virtual Compton Scattering Jets and Parton Dynamics Forward jets and parton emission Initial QGP [AA-eA] UHE Neutrino Scattering and LHeC

Extension of kinematic range by 3-4 orders of magnitude into saturation region (with p and A) Like LHeC ep without HERA.. (e.g. heavy quarks in A)

10-2

10-1

x

10⁻⁹

10

10⁻⁴

10⁻⁹

With eA reach effectively x of 10^{-8} (UHEv)

NuPECC – Roadmap 5/2010: New Large-Scale Facilities

			201 0					201 5					202 0					202 5	
FAIR	PANDA	R&D Construction Comm			missioning Exploit			Exploitation											
	CBM	R&D Construction Commissioning					Exploitation SIS300												
	NuSTAR	R&D Construction Commissioning				Exploit		NESR	FLAIR										
	PAX/ENC	Design Study R&D Tests Construction/Com			ion/Com	nissioning Collider													
SPIRAL2		R&D Constr./Commission. Exploitation				150 MeV/u Post-accelerator													
HIE-ISOLDE		Constr./Commission. Exploitation									Injecto	r Upgrad	e						
SPES		Constr./Commission. Exploitation																	
EURISOL		Design Study R&D Preparatory Phase / Site Decision Engineering Study Cons				nstructior													
LHeC		Design Study R&D Engineering Study Construction/Commissioning																	

G. Rosner, NuPECC Chair, Madrid 5/10

Ring-Ring configuration

Bypasses

Accelerator: Ring - Ring

Based on HERA, LEP and LHC Experience

Workpackages for CDR

Baseline Parameters and Installation Scenarios Lattice Design [Optics, Magnets, Bypasses, IR for high L and 1°] Rf Design [Installation in bypasses, Crabs] Injector Complex [Sources, Injector] Injection and Dump Beam-beam effects Impedance and Collective Effects Vacuum and Beam Pipe Integration and Machine Protection Powering Issues e Beam Polarization Deuteron and Ion Beams

BINP Novosibirsk BNL CERN Cockcroft Cornell DESY EPFL Lausanne KEK Liverpool U SLAC TAC Turkey

e Ring Design

Arc cell design: L_{FODO}(e)=L_{FODO}(p)/2

LHC Cryo jumpers accounted for in asymmetric FODO.

Further interferences mapped and being studied.

Experiments bypassed in new tunnels which houses rf.

Meets spatial LHC constraints Synchrotron radiation < 50MW Two types of quadrupoles Reasonable sextupole parameters Dipoles: 4x lighter/slimmer than LEP Prototypes: Novosibirsk and CERN

Interaction Region

Small crossing angle of about 1mrad to avoid first parasitic crossing (L x 0.77) (Dipole in detector? Crab cavities? Design for 25ns bunch crossing [50ns?] Synchrotron radiation –direct and back, absorption ... recall HERA upgrade...)

Focus of current activity

separation 8.5cm, MQY cables, 7600 A

Linac-Ring configuration

Linac-Ring Configurations

Accelerator: LINAC - Ring

Based on ILC, SLC and LHC Experience

Workpackages for CDR

Baseline Parameters [Designs, Real photon option, ERL] Sources [Positrons, Polarisation] Rf Design Injection and Dump Beam-beam effects Lattice/Optics and Impedance Vacuum and Beam Pipe Integration and Layout Interaction Region Powering Issues Magnets Cryogenics

BINP Novosibirsk BNL CERN Cockcroft Cornell DESY EPFL Lausanne KEK Liverpool U SLAC TAC Turkey

LINAC-Ring Parameters

Table 4: Lepton beam	parameters and	lum inosity.
----------------------	----------------	--------------

	p-60	erl	p-140
e ⁻ energy at IP [GeV]	60	60	140
luminosity $[10^{32} \text{ cm}^{-2} \text{s}^{-1}]$	1.1	10.1	0.4
polarization [%]	90	90	90
bunch population $[10^9]$	4.5	2.0	1.6
e ⁻ bunch length [μ m]	300	300	300
bunch interval [ns]	50	50	50
transv. emit. $\gamma \epsilon_{x,y} [\mu m]$	50	50	100
rms IP beam size $[\mu m]$	7	7	7
hourglass reduction $H_{\rm hg}$	0.91	0.91	0.94
crossing angle θ_c	0	0	0
repetition rate [Hz]	10	CW	10
bunches/pulse [10 ⁵]	1	N/A	1
pulse current [mA]	16	10	6.6
beam pulse length [ms]	5	N/A	5
ER efficiency η	0	94%	0
total wall plug power [MW]	100	100	100

Table 2: SC linac parameters. *RT: room temperature.

	p-60	erl	p-140
RF frequency [MHz]	700	700	700
cavity length [m]	1	1	1
energy gain / cavity	31.5	18	31.5
$R/Q[\Omega]$	403	403	403
$Q_0 [10^{10}]$	1	2.5	1
power loss, stat [W/cav.]	5	5	5
power loss, RF [W/cav]	12.3	32	12.3
power loss, total [W/cav]	17.3	37.2	17.3
real-est. gradient [MeV/m]	17.8	10.26	17.8
length/GeV [m]	55.7	97.5	55.7
#cavities/(1 GeV)	31.8	55.6	31.8
power loss/GeV (2 K) [kW]	0.55	2.06	0.55
"W per W" (1.8 K to RT*)	600	600	600
power loss/GeV (RT*) [MW]	0.33	1.24	0.3
final energy [GeV]	60	60	140
# passes for acceleration	2	3	2
# passes for deceleration	0	3	0
total linac length [km]	1.67	1.95	3.90
tot. cryo power (RT) [MW]	9.9	24.75	23.1
av. beam current [mA]	0.74	6.6	0.27
beam power at IP [MW]	45	396	39
RF power [MW]	89	(22)	75.6
cryo + RF power [MW]	99	(47)	98.4

For ERL version: 2 x 560, 1m long cavities 25 MW cryo power

Cf recent papers to IPAC10 at Kyoto (from LHeC web page)

Design Parameters

electron beam	RR	LR	LR
e- energy at IP[GeV]	60	60	140
luminosity [10 ³² cm ⁻² s ⁻¹]	17	10	0.44
polarization [%]	40	90	90
bunch population [10 ⁹]	26	2.0	1.6
e- bunch length [mm]	10	0.3	0.3
bunch interval [ns]	25	50	50
transv. emit. γε _{x.v} [mm]	0.58, 0.29	0.05	0.1
rms IP beam size $\sigma_{x,y}$ [μ m]	30, 16	7	7
e- IP beta funct. $\beta_{x,y}^*$ [m]	0.18, 0.10	0.12	0.14
full crossing angle [mrad]	0.93	0	0
geometric reduction H _{hg}	0.77	0.91	0.94
repetition rate [Hz]	N/A	N/A	10
beam pulse length [ms]	N/A	N/A	5
ER efficiency	N/A	94%	N/A
average current [mA]	131	6.6	5.4
tot. wall plug power[MW]	100	100	100

proton beam	RR	LR
bunch pop. [10 ¹¹]	1.7	1.7
tr.emit.γε _{x.v} [μm]	3.75	3.75
spot size σ _{x.v} [μm]	30, 16	7
$\beta^*_{x,y}$ [m]	1.8,0.5	0.1
bunch spacing [ns]	25	25

"ultimate p beam" present record N_p=1.3 10¹¹ 1.7 probably conservative

Design also for deuterons (new) and lead (exists)

RR= Ring – Ring **LR** =Linac –Ring

Tentative: 8.7.2010

Detector

Calibration: H1/2

Resolution: $H \rightarrow bbar$

Acceptance: Down to 1-179°

Forward: TeV Jets Backwards: 100 GeV Electrons FB Asymmetry of detector

Beampipe: as small as possible

Modularity for installation in 'short' times

Organisation for the CDR

Scientific Advisory Committee

Guido Altarelli (Rome) Sergio Bertolucci (CERN) Stan Brodsky (SLAC) Allen Caldwell -chair (MPI Munich) Swapan Chattopadhyay (Cockcroft) John Dainton (Liverpool) John Ellis (CERN) Jos Engelen (CERN) Joel Feltesse (Saclay) Lev Lipatov (St.Petersburg) Roland Garoby (CERN) Roland Horisberger (PSI) Young-Kee Kim (Fermilab) Aharon Levy (Tel Aviv) Karlheinz Meier (Heidelberg) Richard Milner (Bates) Joachim Mnich (DESY) Steven Myers, (CERN) Tatsuya Nakada (Lausanne, ECFA) Guenther Rosner (Glasgow, NuPECC) Alexander Skrinsky (Novosibirsk) Anthony Thomas (Jlab) Steven Vigdor (BNL) Frank Wilczek (MIT) Ferdinand Willeke (BNL)

http://cern.ch/lhec

Steering Committee

Oliver Bruening (CERN) John Dainton (Cockcroft) Albert DeRoeck (CERN) Stefano Forte (Milano) Max Klein - chair (Liverpool) Paul Laycock (secretary) (L'pool) Paul Newman (Birmingham) Emmanuelle Perez (CERN) Wesley Smith (Wisconsin) Bernd Surrow (MIT) Katsuo Tokushuku (KEK) Urs Wiedemann (CERN) Frank Zimmermann (CERN)

Accelerator Design [RR and LR] Oliver Bruening (CERN), John Dainton (CI/Liverpool) Interaction Region and Fwd/Bwd Bernhard Holzer (DESY), Uwe Schneeekloth (DESY), Pierre van Mechelen (Antwerpen) **Detector Design** Peter Kostka (DESY), Rainer Wallny (UCLA), Alessandro Polini (Bologna) New Physics at Large Scales George Azuelos (Montreal) Emmanuelle Perez (CERN), Georg Weiglein (Durham) Precision QCD and Electroweak Olaf Behnke (DESY), Paolo Gambino (Torino), Thomas Gehrmann (Zuerich) Claire Gwenlan (Oxford) **Physics at High Parton Densities** Nestor Armesto (Santiago), Brian Cole (Columbia), Paul Newman (Birmingham), Anna Stasto (MSU)

Working Group Convenors

Steps towards completion of CDR

CERN invites referees for

QCD/electroweak: BSM: eA/low x Detector **Interaction Region Design Ring-Ring Design Linac-Ring Design Energy Recovery** Magnets Cost Installation and Infrastructure **Project Position in HEP**

Presentation to Science Policy Committee June 10

Invitation of Referees July/August 2010

Draft of CDR by October 2010

CERN-ECFA-NuPECC Workshop (November)

Report to ECFA: 26.11.2010

Finalisation of design involving referees

Ready for print: March 2011

Evaluation

possibly a TDR with dedicated groups at CERN

Towards a Tentative Schedule

CDR printed in spring 2011

Study of installation and interference issues still to be done

Installation of (ring or linac) LHeC towards 2021 Make maximum use of LHC shutdowns (~50 months).

2021-30: ~10 years of operation with LHC [p/A] colliding with $E_e \approx 60$ GeV [e⁻/e⁺]: ~100fb⁻¹ in ep

later: possible extension to high E_e LHeC

During HE-LHC upgrade shutdown and long term operation With 16 TeV p colliding with e.g. $E_e = 140 \text{ GeV} [e^-/e^+]$ $Q^2_{max} = 9 \text{ TeV}^2 x_{min} = 10^{-7} \text{ in DIS region}$

The time schedule of the LHeC is linked to the LHC, ep has to be doable as an upgrade or 5th experiment to the LHC, so far that looks feasible

Thanks to

Machine and detector experts

CERN: Simona Bettoni, Frederick Bordry, Chiara Bracco, Oliver Bruning, Helmut Burkhardt, Rama Calaga, Edmond Ciapala, Miriam Fitterer, Massimo Giovannozzi, Brennan Goddard, Werner Herr, Bernhard Holzer, John M. Jowett, Trevor Linnecar, Karl Hubert Mess, Steve Myers, Yvon Muttoni, John Andrew Osborne, Louis Rinolfi, Stephan Russenschuck, Daniel Schulte, Rogelio Tomas, Davide Tommasini, Joachim Tuckmantel, Alessandro Vivoli, Uli Wienands, Frank Zimmermann

BNL: Ilan Ben Zvi, Vladimir Litvinenko, Ferdinand Willeke

BINP: Eugene B. Levichev, Ivan Morozov, Yuriy Pupkov, Pavel Vobly, Alexander Skrinsky

Bologna University: Alessandro Polini

University of Antwerp: Pierre Van Mechelen

Cockcroft Institute: Rob Appleby, Ian Bailey, Graeme Burt, Maxim Korostelev, Neil Marks, Luke Thompson

Cornell University: Georg Hofstaetter

DESY: Desmond P. Barber, Sergey Levonian, Alexander Kling, Peter Kostka, Uwe Schneekloth

Liverpool University: John B. Dainton, Tim Greenshaw, Max Klein

KEK: Tsunehiko Omori, Junji Urukawa

SLAC: Chris Adolphsen, Tor Raubenheimer, Michael Sullivan, Yipeng Sun

TAC: A. Kenan Ciftci, Saleh Sultansoy,

ITEP, Moscow: Vladimir Andreev

UCLA: Rainer Wallny

EPFL: Leonid Rifkin

Forgotten someone ? ... apologies!

J.M. Jowett, LHeC Design Status, DIS2010, Florence, 22/4/2010

and a similar number of particle physicists engaged in this study

to CERN, ECFA, NuPECC and my UK

2

Backup slides

HERA - an unfinished programme

	Low x: DGLAP seems to hold though In: Gluon Saturation not proven	1/x is large					
High x: would have required much higher luminosity [u/d ?, xg ?]							
Neutron structure not explored							
	Nuclear structure not explored						
	New concepts introduced, investigation just started: -parton amplitudes (GPD's, proton hologram) -diffractive partons -unintegrated partons						
	Instantons not observed						
	Odderons not found 	*) For an experimental review see: M.Klein, R.Yoshida, "Collider Physics at HERA" arXiv 0805.3334, Prog.Part.Nucl.Phys.61,343(2008) HERA II analysis still ongoing					
	Fermions still pointlike Lepton-quark states (as in RPV SUSY) no	ot observed					

Electroweak Couplings

CDF: $qq' \rightarrow e+e-$ (Drell-Yan), A_{FB} Phys.Rev. D71 (2005) 052002, hep-ex/0411059 LEP/SLC: $ee \rightarrow qq(\gamma)$, $a^2_q + v^2_q$ Phys.Rept.427:257,2006, hep-ex/0509008

For H1, CDF, LEP cf Z.Zhang DIS10

Contact Interactions

$$\mathcal{L} = \frac{4\pi}{2\Lambda^2} j^{(e)}_{\mu} j^{\mu(q)};$$

$$j^{(f=e,q)}_{\mu} = \eta_L \ \overline{f}_L \gamma_{\mu} f_L + \eta_R \ \overline{f}_R \gamma_{\mu} f_R + h.c.$$

$$\Rightarrow \text{ all combinations of couplings } \eta_{ii} = \eta^{(e)}_i \eta^{(q)}_i; \quad q = u, d$$

High luminosity vs high energy

CI study: LHeC freezes the pdfs which allows new physics to be revealed. HERA+BCDMS reshuffle the sea...

CERN: 40cm model design

Novosibirsk: Hysteresis loop measurements

Dipole Magnets

Accelerator	LEP	LHeC
Cross Section/ cm ²	50 x 50	20 x 10
Magnetic field/ T	0.02-0.11	<mark>0.01</mark> -0.10
Energy Range/GeV	20-100	<mark>10</mark> -80
Good Field Area/cm ²	5.9 x 5.9	6 x 3.8
FODO length/m	76	107 [double]
Magnet length/m	11.5	5.5
segmentation	8x31x6	8x23x15
Number of magnets	1488+192 [DS]	3080+320
Weight / kg/m	800	200

Fe based magnet prototypes [BINP-CERN] \rightarrow CDR

challenges:

compact design for installation good reproducibility at injection: 0.01T to $10^{-3.-4}$

Table 2: Parameters of the first two proton quadrupoles [4].

LHC proton interaction-region optics for $\beta^*_{x,y}=0.1 \text{ m}$, scaled from the nominal IR optics (left) [5], and a new IR optics with $\beta^*_{x,y}=0.1 \text{ m}$ for protons [/*=10 m] (top right) and electrons [/*=20 m] (bottom right) [4]

The Detector - Low Q² Setup

Fwd/Bwd asymmetry in energy deposited and thus in technology [W/Si vs Pb/Sc..] Present dimensions: LxD =17x10m² [CMS 21 x 15m², ATLAS 25 x 45 m²]

39

The Detector - High Q² Setup

⁴⁰ Aim of current evaluations: avoid detector split in two phases: time and effort

Motivation and Status

motivation:

•rich physics program: eq physics at TeV energies

precision QCD & electroweak physics

- □ complementing LHC physics results
- beyond the Standard Model
- □ high density matter: low x and eA

Tevatron/LEP/HERA (Fermiscale) \rightarrow LHC/LC/LHeC (Terascale) 100 fold increase in luminosity, in Q^2 and 1/x w.r.t. HERA

status:

•CERN-ECFA-NuPECC workshops (2008, 2009, 2010: 28.-30.October)

•Conceptual Design Report in print by spring 2011

e-Pb Collisions (RR)

Assume present nominal Pb beam in LHC

Same beam size as protons, fewer bunches

 $k_b = 592$ bunches of $N_b = 7 \times 10^{7} \text{ }^{208}\text{Pb}^{82+}$ nuclei

 Assume lepton injectors can create matching train of e⁻

 $k_b = 592$ bunches of $N_b = 1.4 \times 10^{10} \text{ e}^-$

 Lepton-nucleus or lepton-nucleon luminosity in ring-ring option at 70 GeV

 $L = 1.09 \times 10^{29} \text{ cm}^{-2} \text{s}^{-1} \iff L_{\text{en}} = 2.2 \times 10^{31} \text{ cm}^{-2} \text{s}^{-1}$

gives 11 MW radiated power

 May be possible to exploit additional power by increasing electron single-bunch intensity by factor 592/2808=4.7.

title