Monte Carlo Tools for the LHC

Frank Krauss

CERN TH & IPPP Durham

ICHEP 2010

< ∃ >

F. Krauss Monte Carlo Tools for the LHC

Outline

A brief introduction

- 2 Multijet merging
- The POWHEG method
- The MENLOPS method

F. Krauss Monte Carlo Tools for the LHC

A brief introduction

- Higher-order corrections play an important role for physics at the Tevatron and the LHC:
 - Many cross sections experience large K-factors (prime example: $K_{gg \rightarrow H} \gtrsim 2$)
 - Distortions of distributions, mainly due to emission of additional partons.
- In past decade: Huge progress in embedding these corrections systematically into multi-purpose MCs like HERWIG, PYTHIA, or SHERPA.
- Two effects:
 - Qualitatively better description of QCD data at all colliders (LEP, Hera, Tevatron), especially for hard radiation/multijet events.
 - Improved handling of systematic uncertainties often largely reduced scale uncertainties, in POWHEG case: better description of $\sigma_{\rm tot}.$
- In this talk: Will review latest developments, in particular multijet merging at LO, the POWHEG method, and the combination of both ("MENLOPS").

Multijet merging		

Multijet merging

Why multijet merging?

- Parton shower yields approximation to ME
- But: lack of phase space in hadronic collisions typically results in too little QCD activity.

ME vs. PS

- MEs: hard, large-angle emissions; interferences.
- PS: soft, collinear emissions; resummation of large logarithms.
- Combine both, avoid double-counting.
- Right panel: logs in $ee \rightarrow jets$.

	Multijet merging		MENLOPS	
Construct	ing the algorithm			
 Want t 	he best of both - wha	t else?		
• Pr	oper description of soft,	/collinear and hard	l emissions parton multiplicity w	ith showers

- General outline of algorithm:
 - Use LO (tree-level) matrix elements for jet production
 - Could use parton shower kernel $K_{ba}^{ME} \propto |\mathcal{M}_{n+1}|^2 / |\mathcal{M}_n|^2$ hampered by low efficiency for $n \to \infty$.
 - Idea effectively used in traditional reweighting for small n.
 - Also in generation of hardest emission in POWHEG./
 - Preserve original parton shower evolution equation

(N.B.: this guarantees preservation of log accuracy provided by shower)

• Avoid double-counting (positive or negative) Must slice the phase space: Jet production vs. jet evolution \implies adds a parameter - the jet resolution criterion Q_{cut}

(but inclusive results should better not depend too strongly on this parameter)

Multijet merging		

Slicing the phase space

- Decompose splitting kernels of parton showers as $K_{ba}(z, t) = K_{ba}(z, t)\Theta[Q_{cut} - Q_{ba}(z, t)] + K_{ba}(z, t)\Theta[Q_{ba}(z, t) - Q_{cut}].$
- In hard region, call $K_{ba}\Theta[Q_{ba}(z, t) Q_{cut}]
 ightarrow K_{ba}^{ME}$,
- Call $K_{ba}\Theta[Q_{\mathrm{cut}}-Q_{ba}(z,\,t)] \to K_{ba}^{PS}$ in soft region.
- Sudakov form factor factorises (exponential):

 $\Delta_{a}(\mu^{2}, t) = \Delta_{a}^{PS}(\mu^{2}, t) \Delta_{a}^{ME}(\mu^{2}, t)$

Also, no emission probability can be rewritten:

$$\mathcal{P}_{a}^{\mathrm{no}}(z, t, \overline{t}) = \frac{\Delta_{a}^{PS}(\mu^{2}, \overline{t})}{\Delta_{a}^{PS}(\mu^{2}, t)} \frac{\Delta_{a}^{ME}(\mu^{2}, \overline{t})}{\Delta_{a}^{ME}(\mu^{2}, t)} \frac{g_{a}(z, t)}{g_{a}(z, \overline{t})}$$

 In shower, need to veto emissions with Q_{ba} > Q_{cut}. But may have emissions at Q < Q_{cut} but t larger than those in ME: must cure "mismatch" of shower and jet measure → truncated showers

Multijet merging	MENLOPS	

Defining PS histories

- Identify most likely splitting acc. to PS branching probability
- Combine partons into mother parton acc. to inverse PS kinematics
- Continue until $2 \rightarrow 2$ core process

→→ shower specific cluster algorithm
 →→ predetermined shower emissions
 PS starts at core process
 can radiate "between" ME emissions
 ME branchings must be respected

evolution-, splitting- & angular variable preserved

 \rightsquigarrow truncated shower

Implementations

• Available implementations of this method in SHERPA & HERWIG++.

CERN TH & IPPP Durham

• MLM method for ALPGEN, MADGRAPH etc. (misses some terms)

Multijet merging	MENLOPS	

 Z^0 +jets at Tevatron: Total cross sections

 Q_{cut} and/or N_{max} variation should affect σ_{tot} only beyond (N)LL

• Example: DY-pair production $\sigma_{\rm tot}$ @ Tevatron

		Nmax						
		0	1	2	3	4	5	6
	20 GeV		191.0(3)	190.5(4)	189.0(5)	189.4(7)	188.2(8)	189.9(10)
$Q_{\rm cut}$	30 GeV	192.6(1)	192.3(2)	192.7(2)	192.6(3)	192.9(3)	192.7(3)	193.2(3)
	45 GeV	1	193.6(1)	194.4(1)	194.3(1)	194.4(1)	194.6(2)	194.4(1)

ullet improved "merging systematics" of $\sigma_{ m tot} < \pm 3\%$

Monte Carlo Tools for the LHC

F. Krauss

Multijet merging	MENLOPS	

Monte Carlo Tools for the LHC

F. Krauss

Multijet merging		

Monte Carlo Tools for the LHC

F. Krauss

Multijet merging	MENLOPS	

CDF data from PRL 100 (2008) 102001 and D0/, arXiv:0808:1296

CERN TH & IPPP Durham

Monte Carlo Tools for the LHC

F. Krauss

Multijet merging		

DØ data: PRL 100 (2008) 102002

CERN TH & IPPP Durham

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Monte Carlo Tools for the LHC

F. Krauss

	Multijet merging		MENLOPS	
A new Monte	Carlo approach for	^r Prompt-Photo	n Production	
		(S.Höche, S.Sc	humann, F.Siegert PRD 81 (2010)	034026)

• treat photons and QCD partons fully democratically

```
(Glover, Morgan Z. Phys. C 62 (1994) 311)
```

- combine matrix elements of different parton/photon multiplicity with
- QCD \oplus QED evolution and hadronisation \rightsquigarrow models $D_{q,g}^{\gamma}(z, Q^2)$

Generalised merging formalism

• Emission probabilities factorise trivially as before

$$\Delta_{a}(Q_{0}^{2},Q^{2}) = \Delta_{a}^{(\text{QCD})}(Q_{0}^{2},Q^{2})\Delta_{a}^{(\text{QED})}(Q_{0}^{2},Q^{2})$$

- ullet Implemented by adding splitting functions ${\it q} \rightarrow {\it q} \gamma$
- Different then large- N_C QCD: spectators all particles with opposite charge
- Neglect (negative) interference with same-sign charges

(S.Dittmaier, Nucl. Phys. B 565 (2000) 69)

Multijet merging		

Results: photon fragmentation function in $e^+e^- \rightarrow$ Hadrons

(Aleph data from Z. Phys. C 69 (1996) 365)

- Validation of the shower/hadronisation component
- Perform jet finding including final-state photons
- Study photon-energy fraction wrt its containing jet: $z_\gamma \equiv E_\gamma/E_{
 m jet}$

F. Krauss

• E • •

F. Krauss

Monte Carlo Tools for the LHC

F. Krauss Monte Carlo Tools for the LHC

F. Krauss Monte Carlo Tools for the LHC

CERN TH & IPPP Durham

Monte Carlo Tools for the LHC

	POWHEG	

The POWHEG method

Basic idea

- Want total cross section and first emission correct at $\mathcal{O}(\alpha_{S})$
- Master formula:

$$\mathrm{d}\sigma_{\mathrm{NLO}} = \mathrm{d}\Phi_{\mathcal{B}}\bar{\mathcal{B}}(\Phi_{\mathcal{B}})) \left[\bar{\Delta}(p_{\perp,\min}) + \int_{p_{\perp,\min}} \mathrm{d}\Phi_{\mathcal{R}|\mathcal{B}} \frac{\mathcal{R}(\Phi_{\mathcal{R}})}{\mathcal{B}(\Phi_{\mathcal{R}})} \bar{\Delta}(p_{\perp}) \right]$$

- \mathcal{B} , \mathcal{R} denote Born and real emission ME, respective phase space $\Phi_{\mathcal{B},\mathcal{R}}$.
- $\Phi_{\mathcal{R}|\mathcal{B}}$ is the phase space for one particle splitting connecting both.
- Since Sudakov form factor $\overline{\Delta}$ reads:

$$\bar{\Delta}(p_{\perp}) = \exp\left[-\int \mathrm{d}\Phi_{\mathcal{R}|\mathcal{B}}\Theta[k_{\perp}(\Phi_{\mathcal{R}}) - p_{\perp}]\frac{\mathcal{R}(\Phi_{\mathcal{R}})}{\mathcal{B}(\Phi_{\mathcal{R}})}\right],$$

the expression in square bracket above = 1 (unitarity).

• $\overline{\mathcal{B}}(\Phi_{\mathcal{B}})$ denotes the NLO-weighted differential xsec for Born configuration.

		POWHEG		
Algorithm				
• Generate a	starting Born-ty	pe parton configur	ation distributed a	ccording to
de	$\Phi_{\mathcal{B}}\bar{\mathcal{B}}(\Phi_{B}) = \mathrm{d}\Phi_{\mathcal{A}}$	$_{\mathcal{B}}\left[\mathcal{B}(\Phi_{\mathcal{B}})+\mathcal{V}(\Phi_{\mathcal{B}})\right]$	$+\int \mathrm{d}\Phi_{\mathcal{R} \mathcal{B}}\mathcal{R}(\Phi_{\mathcal{R}})$)]

with ${\cal B}$ the Born, ${\cal V}$ the virtual, and ${\cal R}$ the real emission contribution.

Generate the hardest emission according to Δ
, where the usual splitting kernel K(t, z) is replaced by the ratio R(Φ_R)/B((Φ_B):

$$\frac{\mathrm{d}t}{t}\mathrm{d}z\,\mathcal{K}(t,\,z)\to\mathrm{d}\Phi_{\mathcal{R}|\mathcal{B}}(t,\,z)\frac{\mathcal{R}(\Phi_{\mathcal{R}})}{\mathcal{B}(\Phi_{\mathcal{B}})}$$

• Perform a regular truncated shower on the resulting parton configuration.

Algorithm

- Two public implementations: In HERWIG++ and in the POWHEGBOX, SHERPA in progress (see next talk).
- The POWHEGBOX implementation "sits" on top of arbitrary parton shower through LHE-Interface, harms truncating the shower.

	POWHEG	

Available processes/implementations

- $pp \rightarrow W/Z$ (POWHEGBOX & HERWIG++) • $pp \rightarrow H$ (POWHEGBOX & HERWIG++) • $pp \rightarrow V + H$ (HERWIG++)
- $pp \rightarrow ZZ$
- $pp \rightarrow QQ$
- single-top
- VBF

In preparation:

- $pp \rightarrow VV$
- $pp \rightarrow V+jet$

(PowhegBoX)

(POWHEGBOX)

(POWHEGBOX)

(POWHEGBOX)

(POWHEGBOX)

W+jets at Tevatron: p_{\perp}^{W} -spectra

 POWHEG method as implemented in HERWIG++ vs. MC@NLO and HERWIG++.

(Note: when only shape considered, do not expect difference to native ${\sf HERWIG}{++}$ with ME corrections included

⇒ simple check of implementation.)

Image: Image:

.

	POWHEG	MENLOPS	

CERN TH & IPPP Durham

Monte Carlo Tools for the LHC

F. Krauss

	POWHEG	MENLOPS	

H+jets at LHC: Implicit higher orders in POWHEG

- Can replace B
 → B in dσ to check if huge K-factor of O(2) is just due to proper NLO correction (left panel): expect only a vertical shift.
- Can also check for shape w.r.t. higher-order code and switch on/off shower & hadronisation effects (right panel)

CERN TH & IPPP Durham

F. Krauss Monte Carlo Tools for the LHC

	POWHEG	

H+jets at LHC: Implicit higher orders in POWHEG

- Cross check with MC@NLO, which has similar goal, but different algorithm.
- Problem in MC@NLO becomes apparent: resides on HERWIG-shower, which does not have full phase space coverage interplay of positive and negative weights with this partial phase space filling produces dips.
- That's why I like POWHEG better and it's easier to implement.

F. Krauss

The MENLOPS method

Basic idea

- At present:
 - can merge "arbitrary" tree-level MEs with PS
 - Several automated codes on the market
 - Automation of 1-loop QCD corrections seems feasible (automated codes now emerging)
- \bullet We should make use of both and automate $\mathsf{ME}{\otimes}\mathsf{PS}$ at 1-loop
- Strategy: Use whatever is available
 - Process NLO parton-level events with PS at low multiplicities (through MC@NLO or, preferably, POWHEG method)
 - Combine NLO simulation with higher-order tree-level using standard ME⊗PS technique for high multiplicities
- First step: POWHEG for lowest multiplicity only.

			MENLOPS		
Some the	Some theoretical considerations				
• Compare $\sigma_{(NLO)}$ for POWHEG and ME \otimes PS:					

$$d\sigma_{\rm NLO}^{\rm (POW)} = d\Phi_{\mathcal{B}}\bar{\mathcal{B}}(\Phi_{\mathcal{B}})) \left[\bar{\Delta}(p_{\perp,\min}) + \int_{p_{\perp,\min}} d\Phi_{\mathcal{R}|\mathcal{B}} \frac{\mathcal{R}(\Phi_{\mathcal{R}})}{\mathcal{B}(\Phi_{\mathcal{R}})} \bar{\Delta}(p_{\perp}) \right] d\sigma_{\rm NLO}^{\rm (MEPS)} = d\Phi_{\mathcal{B}}\mathcal{B}(\Phi_{\mathcal{B}})) \left[\Delta(p_{\perp,\min}) + \int_{p_{\perp,\min}} d\tilde{\Phi}_{\mathcal{R}|\mathcal{B}} \frac{\mathcal{R}(\Phi_{\mathcal{R}})}{\mathcal{B}(\Phi_{\mathcal{R}})} \Delta(p_{\perp}) \right]$$

- Nearly the same. Most notably: NLO vs. LO normalisation. Boils down to a local K factor = \overline{B} / B
- Also note: different Sudakovs, in ME \otimes PS [...] does not integrate to one. Reason: Kernel in Sudakov Δ differs from \mathcal{R}/\mathcal{B} .
- Proposal by Hamilton & Nason: scale up ME⊗PS by global K-factor, use MLM merging scheme.
- See next talk for version on improved CKKW merging.

п.

	MENLOPS	

Some results

(From K.Hamilton's talk at MC4LHC Tools Readineess, March 2010)

F. Krauss

Monte Carlo Tools for the LHC

	MENLOPS	

Some results

(From K.Hamilton's talk at MC4LHC Tools Readineess, March 2010)

F. Krauss Monte Carlo Tools for the LHC

			Conclusions
Conclusio	าร		

- Predictions by Monte Carlo event generators benefitted dramatically from inclusion of higher-order corrections in various ways: Total cross section under NLO control, emission pattern for each jet according to full ME.
- LO-merging technology now very mature, many implementations, theoretical framework is fully established

(NLO calculations discover scale setting prescription of merging algorithms, may lead to better NLO predictions.)

- For simple processes (about one colour line) two ways of including full NLO calculation into shower: MC@NLO (maybe a bit tedious) and POWHEG.
- The latter opens the door to combining both merging and matching.
- The ultimate goal, of course, of this development is a multijet merging with NLO matrix elements

 \longrightarrow work in progress.