

THE ANTARES NEUTRINO TELESCOPE

Maurizio Spurio Department of Physics and INFN – Bologna

NEUTRINO ASTRONOMY

among the most intriguing science questions:

- origin of cosmic rays \rightarrow 10²⁰ eV ?
- astrophysical acceleration mechanism ?
- origin of relativistic jets ?
- dark matter ?
- exotics

Cosmic sources of neutrinos

- Extragalactic: Active Galactic Nuclei, GRBs
- Galactic: micro quasars, supernova remnants ...

Ref: EPJC 65 (2010) 649, arXiv: 0906.2634v2

TeV γ rays (p+X $\rightarrow \pi^0 \rightarrow \gamma\gamma$) at the centre of **our galaxy** from supernova remnant *RX J1713.7-39*.

neutrinos reach Earth undisturbed: need large detector and good angular resolution

THE ANTARES COLLABORATION

M.Spurio- The ANTARES Neutrino Telescope ICHEP 2010

University of Erlangen Bamberg Observatory

NIKHEF (Amsterdam) KVI (Groningen) NIOZ Texel

CPPM, Marseille DSM/IRFU/CEA, Saclay APC, Paris LPC, Clermont-Ferrand IPHC (IReS), Strasbourg Univ. de H.-A., Mulhouse IFREMER, Toulon/Brest C.O.M. Marseille LAM, Marseille GeoAzur Villefranche

IFIC, Valencia UPV, Valencia UPC, Barcelona

University/INFN of Bari University/INFN of Bologna University/INFN of Catania LNS - Catania University/INFN of Pisa University/INFN of Rome University/INFN of Genova

> ITEP, Moscow Moscow State Univ

> > ISS, Bucarest

THE TELESCOPE SETUP

12 detection lines 25 storeys/line 3x10" PMT/storey 885 PMT s

THE BACKGROUND AT THE ANTARES SITE

Two kinds of background :

- **1.** (Particle) Physics Background : cosmic rays (atmospheric μ and ν).
- 2. Optical Background: bioluminescence and ⁴⁰K decay (sea environment):
- Continuous ⁴⁰K (~30kHz) and bioluminescence (~40 kHz, long term average).
- Bursts from bioluminescence (~MHz).

THE PRECISE/FAST TRACKING

Fast tracking:

- almost online to discriminate atmospheric muons /neutrinos;
- No detailed calibration/ no real time detector positioning needed
- Angular resolution: $\Delta\theta{\sim}$ 3° .
- Used in most analyses in this talk.

The precise tracking:

- detailed real-time positioning of the detector;
- detailed PMTs charge/time calibration;
- detailed systematic knowledge of the apparatus (OMs angular acceptance, etc.)
- •Angular resolution: up to $\Delta\theta{\sim}0.2^{o}$.
- Used in the diffuse analysis search

Ref: arXiv 0908.0816

EVENT DISPLAY: ATMOSPHERIC MUONS

reconstruction of muon trajectory from **time, charge and position** of PMT hits assuming relativistic muon emitting **Cherenkov light**

EVENT DISPLAY: NEUTRINO-INDUCED MUON Fast tracking

SELECTED RESULTS
atmospheric muon flux
atmospheric neutrinos
point sources
diffuse v_µ flux

ATMOSPHERIC MUONS

Zenith angle distribution of reconstructed tracks from atmospheric μ 's. 5 line detector.

Main sources of syst. uncertainties:

- environmental parameters (absorption and scattering)
- detector parameters (OM efficiency)
- (physics) hadronic interaction models
- (physics) models of cosmic ray composition

ATMOSPHERIC NEUTRINOS

Fast tracking

5-line data (May-Dec. 2007) + 9-12 line data (2008)= **341** days detector live time

Upgoing:

1062 neutrino candidates:**3.1 ν** candidates/day

Monte Carlo:

atmospheric neutrinos: 916 (30% syst. error) Wrong reco atmospheric μ : 40 (50% syst. error)

POINT SOURCE UPPER LIMITS

Fast tracking

list of 25 potential sources (stringent cuts to reduce background) Analysis optimization based on simulations

no excess found after 5-line data unblinding

140 days of detector livetime

DIFFUSE v_{μ} FLUX –ENERGY ESTIMATOR

 $dE_{\mu}/dx = \alpha(E_{\mu}) + \beta(E_{\mu}) \cdot E_{\mu}$

μ direct photons + μ scattered photons + light from EM showers

Energy estimator= Repetition (R) of integration gate on the same Optical Module

ENERGY ESTIMATOR ON ATMOSPHERIC MUONS

DIFFUSE v_{μ} FLUX – ANALYSIS STEPS

- 1. Rejection of downward going atmospheric muons (using measured zenith angle, track quality parameter, number of hits)
- 2. Separation of the atmospheric v background from signal $E^2 \Phi_{test} = 1.0 \times 10^{-7} \text{ GeV cm}^{-2} \text{ s}^{-1} \text{ sr}^{-1}$ using the energy estimator R

Blind analysis.
Model Rejection Factor
[APP 19 (2003)393] to
select the best cut value on
R (=1.31) predefined from
MC only.

DIFFUSE v_{μ} FLUX – RESULTS

DIFFUSE v_{μ} FLUX – UPPER LIMITS (E⁻²)

 $E^{2}\Phi(E)_{90\%} = 4.7 \times 10^{-8}$ GeV cm⁻² s⁻¹ sr⁻¹

20 TeV<E<2.5 PeV

DIFFUSE v_{μ} FLUX – UPPER LIMITS – (other energy spectra)

ONGOING COMBINED SEARCHES

- Receive GRB alerts from Satellites (Fermi, Swift...) search for coincident neutrinos within time window (~100 s)
- Send neutrino cluster alert for optical follow-up Trigger: multiple / HE single neutrino event; Reconstruction "on-line" (<10ms)
- Alert message to Tarot Telescope in La Silla (Chile). Tarot takes 6 images of 3 minutes immediately and after 1, 3, 9 and 27 days sending alerts to the ROTSE system (4 telescopes)
- Correlation with AUGER source distribution investigate directional correlation of neutrinos and UHE particles
- Correlation with VIRGO-LIGO signals investigate correlation of neutrinos and gravitational waves

CONCLUSIONS

ANTARES

- continuously taking data
- complements the sky coverage of IceCube
- has a broad physics program
- determined most sensitive upper limit on diffuse flux
- paves the way for KM3NeT

ANGULAR RESOLUTION

angular resolution = difference between reconstructed and MC generated angles vs. neutrino energy

POSITION CALIBRATION

Angular resolution \rightarrow 0.3° (for E_v > 10 TeV)

Including the acoustic position resolution and the v- μ angle

The biggest challenge is to determine

the separate contribution of absorption and scattering

M ANGULAR ACCEPTANCE

Has to be known to compute reconstruction efficiencies and effective areas

Measurements were performed in a water tank Photon scattering affects the measurements

angular acceptance determination is not reliable at large θ_{PMT}

LED

1.0 - GEANT4 acceptance angular acceptance **Detailed GEANT4** 0.8 water tank acceptance simulation of the OM 0.6 0.4 0.2 Dedicated measurements of 0.0 the photocathode surface -0.8 -0.5 -0.2 0.4 0.7 0.1 of OMs cosθ

Angular acceptance uncertainty at large θ affects μ flux significantly, but not v flux

IN SITU CALIBRATION WITH 40K

Heide Costantini – INFN Gerourio- The ANTARES Neutrino Telescope ICHEP 2010

RICH2010, 3rd May 2010

- REAL TIME POSITIONING → Acoustic positioning system + set of tiltmeters and compasses.
- Transceivers (RxTx) on the bottom of the lines, 4 autonomous transponders around the apparatus. • Geometry

.

- 5 hydrophones (Rx) per line at specific heights.
- Tiltmeter and compass per storey, sound velocimeters (various depths).

RECONSTRUCTION OF THE LINE SHAPE \rightarrow **GLOBAL** χ^2 **FIT TO LINE SHAPE**

hydr ophone Hydrophone position relative to line base location (20 days) Northing (m) Storey 25 Storey 20 Storey 14 Storey 8 Storey 1 coust i c **Resolution better than 10 cm** t ranscei ver coust i c t ranscei ver -12 -2 -10 2 Easting (m)

MODEL (BEHAVIOUR OF LINE: SEA CURRENT)

The ANTARES Neutrino Telescope ICHEP 2010