

D^+ , D^0 and Λ_c^+ production in deep inelastic scattering at HERA

Philipp Roloff (DESY & University of Hamburg)

35th International Conference on High Energy Physics ICHEP 2010, 22-28 July 2010, Paris

Outline

This talk: Measurements of charm production in DIS at HERA:

• **HERA I data:** D⁺ at threshold and Λ_c^+ production (DESY-10-064)

• HERA II data:

 D^{+} and D^{0} cross sections with high precision, extraction of $F_{2}^{\ c}$

(ZEUS-prel-10-005, Eur. Phys. J. C 63: 171)

Charm production in DIS at HERA

 Dominant process for charm production in DIS (Q² > a few GeV²):
Boson-Gluon-Fusion (BGF)

• Multiple hard scales: $\mu^2 = m_c^2$, p_T^2 , Q^2

• The charm contribution to the inclusive DIS cross section is up to 30%

• The double differential cross section for the production of open charm can be written as:

 $\frac{d^2 \sigma^{c\bar{c}}(x,Q^2)}{dx dQ^2} = \frac{2\pi \alpha^2}{xQ^4} \{ [1 + (1-y)^2] F_2^{c\bar{c}}(x,Q^2) + y^2 F_L^{c\bar{c}}(x,Q^2) \}$

Newly analysed decay channel: $D^+ \rightarrow K^0_{\ s} \pi^+$

New decay channel:

 K_{s}^{0} in the final state \rightarrow Reduction of background \rightarrow Access to the low transverse momentum region

Kinematic region:

 $0 < p_T(D^+) < 10 \text{ GeV}$ $|\eta(D^+)| < 1.6$ $1.5 < Q^2 < 1000 \text{ GeV}^2$ 0.02 < y < 0.7

Data sample: 120 pb⁻¹ (1996-2000), only 17 pb⁻¹ for $Q^2 < 20 \text{ GeV}^2$

22/07/2010

NLO QCD predictions from HVQDIS

Visible cross sections are compared to predictions obtained using the HVQDIS program (Harris & Smith)

 \rightarrow Fully differential NLO QCD prediction in the **Fixed Flavour number scheme** (FFNS):

- Charm (and beauty) are produced dynamically (not part of proton or photon)
- c, b massive
- Neglects $[\alpha_s \ln(\mu^2 / m^2)]^n$
- Valid at threshold

Cross sections: dσ/dη(D⁺), dσ/dQ², dσ/dx

ZEUS D⁺ 120 pb⁻¹
HVQDIS

The data are reasonably described by HVQDIS

Parameters and variations:

- ZEUS-S FFNS PDF (varied within uncertainty)
- m = 1.5 GeV (1.35 1.65 GeV)
- $\mu_R^2 = \mu_F^2 = Q^2 + 4m_c^2$ (separately multiplied

by 4 and 0.25)

• Peterson ε = 0.079 (0.01 - 0.1)

22/07/2010

Cross sections: dσ/dp₇²(D⁺)

• The data are in good agreement with a previous ZEUS measurement (using $D^+ \rightarrow K^-\pi^+\pi^+$) for $p_{\tau}(D^+) > 3 \text{ GeV}$

• The data are in reasonable agreement with HVQDIS

 $f(c \rightarrow \Lambda_c^+)$ in DIS

Motivation:

- Test fragmentation universality
- Affects knowledge of $f(c \rightarrow D^+, D^*, ...)$
- \rightarrow Important for precise F_2^{c} from D mesons

Difficult measurement at HERA (statistics!) \rightarrow Combine two decay channels (same kinematic range as for D⁺ \rightarrow K⁰ $_{c}\pi^{+}$)

Reconstruction of D⁺ and D⁰ mesons using lifetime information

Decay channels: $D^+ \rightarrow K^- \pi^+ \pi^+$ $D^0 \rightarrow K^- \pi^+$

Micro Vertex Detector (HERA II): → Reconstruct secondary decay vertices

L_{xy}: 2D distance between the secondary vertex and the primary interaction point projected onto the D Meson momentum vector

$$S_{I} = L_{XY} / \sigma(L_{XY})$$

D⁺ and D⁰ measurement

22/07/2010

D⁺ cross sections

• The measurements are described by HVQDIS (same parameters as for the HERA I analysis)

• The published (05) and preliminary (05-07) results are in good agreement and the precision has improved significantly

Competitive precision as
D* measurements in HERA I

- ZEUS D⁺ (prel.) 323 pb⁻¹
- ZEUS D⁺ 133.6 pb⁻¹

22/07/2010

D⁰ cross sections

All cross sections are reasonably described by HVQDIS

 $ep \rightarrow e + D^0 / \overline{D}^0 + X$

NLO QCD (HVQDIS)

- ZEUS (133.6 pb⁻¹)
 - 12

22/07/2010

Extraction of F_2^{c}

Extrapolation factors for D⁺ and D⁰ measurement:

1.5 (at high Q^2) – 3.2 (at low Q^2)

 \rightarrow Lower than in previous D⁺ and D⁰ analysis due to lower p₁(D⁺,D⁰) cut

F_2^{c} as a function of x in bins of Q^2

 Preliminary D⁺ results are compared to H1+ZEUS combination of all available tagging methods (except D⁺ prel.)

• For HERA combined F_2^{c} \rightarrow see talk by M. Corradi

• The data are well described by HERAPDF1.0

• The black points, the red points are and HERAPDF1.0 are based on independent data sets

Summary

- The production of the charmed hadrons D⁺, D⁰ and Λ_c^+ in DIS has been studied in detail at HERA
- The measurements are reasonably described by NLO QCD predictions
- For the first time the threshold region and $f(c \rightarrow \Lambda_c^+)$ were investigated in DIS using new decay channels
- Precise measurements of D⁺ and D⁰ have been obtained using lifetime tags and the corresponding contribution to F_2 has been extracted

Backup slides

pQCD Treatment of charm (and beauty) production in DIS

Massive, FFNS:

c and b produced dynamically (not part of proton or photon)

- c, b massive
- Neglects $[\alpha_s \ln(\mu^2 / m^2)]^n$
- Valid at threshold

Massless, ZM-VFNS:

c and b massless partons in proton and photon

- c, b massless
- Resums $[\alpha \ln(\mu^2 / m^2)]^n$
- Valid for $\mu^2 >> m^2$

Variable Flavour Number Scheme, (GM)-VFNS:

Interpolates / matches between both approaches

• Massive at low Q², massless at high Q²

22/07/2010

Secondary vertex reconstruction

 \rightarrow Lifetime and vertex quantities are well reproduced by the MC