Hadron physics at KLOE: results and prospects

P.Gauzzi

(Universita' La Sapienza e INFN – Roma) for the KLOE / KLOE-2 Collaborations

ICHEP 2010 23 July 2010 – Paris

1200

1000

800

600

400

200

- Frascati ϕ -factory: e^+e^- collider @ $\sqrt{s} \approx 1020 \text{ MeV} \approx M_{\phi}$; $\sigma_{\text{peak}} \approx 3.1 \text{ }\mu\text{b}$
- •Best performances in 2005:
 - $L_{peak} = 1.4 \times 10^{32} \text{ cm}^{-1} \text{s}^{-1}$
 - $\int \mathbf{L} dt = 8.5 \ \mathrm{pb^{-1}/day}$
- KLOE: 2.5 fb⁻¹ @ $\sqrt{s}=M_{\phi} \implies 8 \times 10^9 \phi \text{ produced})$ + 250 pb⁻¹off-peak @ $\sqrt{s}=1000 \text{ MeV}$
 - DAΦNE upgrade: New interaction scheme implemented, large beam crossing angle + crabbed waist optics
- ⇒ Luminosity increase: factor ~ 3
 ∫ Ldt ≈ 1 pb⁻¹/hour
- DAΦNE commissioning start in September 2010 for the KLOE-2 data-taking

P.Gauzzi

Physics at a **\$\$**-factory

- Kaon physics: $|V_{us}|$ and CKM unitarity, CP and CPT violation, rare decays, χ PT tests, quantum mechanics tests
- $\bullet \phi$ radiative decays: pseudoscalar and scalar mesons
- Hadron production in γγ collisions
- Hadronic cross-section via ISR $[e^+e^- \rightarrow \gamma \ (\pi^+\pi^-)]$: hadronic corrections to $(g-2)_{\mu}$

 $\eta \rightarrow \pi^+ \pi^- \gamma$

- ϕ -factory $\Rightarrow \phi \rightarrow \eta \gamma$: large samples of η $\Rightarrow L = 2.5 \text{ fb}^{-1} \Rightarrow 8 \times 10^9 \phi \Rightarrow \sim 10^8 \eta$
- $\eta \rightarrow \pi^+ \pi^- \gamma$: significant contribution from box anomaly expected
- $M_{\pi\pi}$ distribution needed to evaluate box anomaly vs resonant (ρ -dominated) contributions
- Existing measurements not sufficient for unambiguous interpretation [Benayoun et al., EPJC31, 525 (2003)]
- Recent CLEO result more than 2 σ lower than previous measurements

$\Gamma(\eta { ightarrow} \pi^{+}\pi^{-}\gamma) / \Gamma(\eta { ightarrow} \pi^{+}\pi^{-}\pi^{0})$

η,η

value	events	author	year
0.203 ± 0.008	F	DG averag	e
0.175 ± 0.007 ± 0.006	859	Lopez	2007
0.209 ± 0.004	18 k	Thaler	1973
0.201 ± 0.006	7250	Gormley	1970

 $\eta \rightarrow \pi^+ \pi^- \gamma$

Data

All MC

- $\phi \rightarrow \eta \gamma, \eta \rightarrow \pi^+ \pi^- \gamma$: 6×10⁵ events in 1.2 fb⁻¹
- Normalization to $\eta \rightarrow \pi^+ \pi^- \pi^0$
- Main background: $\phi \rightarrow \pi^+ \pi^- \pi^0$
- Simultaneous fit on $M_{\gamma\gamma}$ and $\cos \vartheta_{\gamma\gamma}$

 $\frac{\Gamma(\eta \to \pi^+ \pi^- \gamma)}{\Gamma(\eta \to \pi^+ \pi^- \pi^0)} = 0.201 \pm 0.006_{\text{stat} \oplus \text{syst}}$

- Improving the systematics $\Rightarrow \sim 1\%$
- Agreement with the older measurements
- **Prospects:**
 - Use the full KLOE data set to investigate the $\pi^+\pi^-$ invariant mass distribution
 - $-\eta' \rightarrow \pi^+ \pi^- \gamma : \sim 10^5$ events expected from first KLOE-2 run
 - \Rightarrow combined $\eta/\eta' \rightarrow \pi^+\pi^-\gamma$ analysis

 $\cos\theta(\gamma_{\eta}\gamma_{\phi})$

 $\eta \rightarrow \pi^+ \pi^- e^+ e^-$

- **Rare decay:** χ**PT and** VDM predictions \Rightarrow Br ~ 3 × 10⁻⁴
- 2 measurements: CMD-2 4 events WASA@CELSIUS 16 events
- Data sample: 1.73 fb⁻¹
- $M(\pi^+\pi^-e^+e^-)$ distribution: fit with signal + background (MC) \Rightarrow 1555 ± 52 signal events 368 background 66

[PLB675(2009)283]

P.Gauzzi

 $\eta \rightarrow \pi^+ \pi^- e^+ e^-$

- Plane asymmetry ⇒ test of CP violation
- Constraints from Br($\eta \rightarrow \pi^+\pi^-$): expt. A_{CP} < 10⁻⁴ th. (SM) A_{CP} < 10⁻¹⁵

 $\mathbf{A}_{\mathrm{CP}} = \frac{\mathbf{N}(\sin\phi\cos\phi > \mathbf{0}) - \mathbf{N}(\sin\phi\cos\phi < \mathbf{0})}{\mathbf{N}(\sin\phi\cos\phi > \mathbf{0}) + \mathbf{N}(\sin\phi\cos\phi < \mathbf{0})}$

 Non conventional CP violation mechanism (non CKM) proposed ⇒ A_{CP} up to 2×10⁻² [D.N.Gao MPLA17(2002)]

 $A_{CP} = (-0.6 \pm 2.5 \pm 1.8) \times 10^{-2}$

[PLB675(2009)283]

• KLOE-2

- with $O(10 \text{ fb}^{-1}) \Rightarrow \delta Br \sim 1.4\%$ (stat.)

$$\delta A_{CP} \sim 1.2 \%$$
 (")

2010

– reduce systematics

 $-O(20 \text{ fb}^{-1}) \text{ with IT} \Rightarrow \delta A_{CP} < 1\%$

• $\eta \rightarrow \pi \pi \pi \text{ decay} \Rightarrow \text{Isospin violation } L_{I} = -\frac{1}{2}(m_{u} - m_{d})(\overline{u}u - \overline{d}d)$

 $\eta \rightarrow \pi^0 \pi^0 \pi^0$

• Symmetric Dalitz plot: $|A|^2 \propto 1 + 2 \alpha Z \implies$ only one parameter

$$Z = \frac{2}{3} \sum_{i=1}^{3} \left(\frac{3E_i - M_{\eta}}{M_{\eta} - 3M_{\pi}} \right)^2 = \frac{\rho^2}{\rho_{max}^2}$$

(ρ = distance from the Dalitz plot center)

• 450 pb⁻¹; 7 prompt photons $\Rightarrow 6.5 \times 10^5$ events $\alpha = -0.0301 \pm 0.0035^{+0.0022}_{-0.0036}$

[arXiv:1004.1319, submitted to PLB]

• $\eta \rightarrow \pi \pi \pi \text{ decay} \Rightarrow \text{Isospin violation } L_{I} = -\frac{1}{2}(m_{u} - m_{d})(\overline{u}u - \overline{d}d)$

 $\eta \rightarrow \pi^{\nu}\pi^{\nu}\pi^{\nu}$

ರ

• Symmetric Dalitz plot: $|A|^2 \propto 1 + 2 \alpha Z \implies$ only one parameter

$$Z = \frac{2}{3} \sum_{i=1}^{3} \left(\frac{3E_i - M_{\eta}}{M_{\eta} - 3M_{\pi}} \right)^2 = \frac{\rho^2}{\rho_{max}^2}$$

(ρ = distance from the Dalitz plot center)

• 450 pb⁻¹; 7 prompt photons $\Rightarrow 6.5 \times 10^5$ events $\alpha = -0.0301 \pm 0.0035^{+0.0022}_{-0.0036}$

[arXiv:1004.1319, submitted to PLB] Strong interactions mix the two amplitudes $A(\eta \rightarrow \pi^{+}\pi^{-}\pi^{0})$ and $A(\eta \rightarrow \pi^{0}\pi^{0}\pi^{0})$: from the Dalitz plot of $\eta \rightarrow \pi^{+}\pi^{-}\pi^{0}$ $\Rightarrow \alpha = -0.038 \pm 0.003^{+0.012}_{-0.008}$ [JHEP0805(2008)006]

<i>γγ physics

- $X = \pi \pi \Rightarrow$ search for $\sigma(600)$
- $X = \pi^0$, η , (η')
 - $-\Gamma(X \rightarrow \gamma \gamma)$
 - Transition form factors $\mathcal{F}_{X\gamma^*\gamma^*}(q_1^2,q_2^2)$
- KLOE: no e^{\pm} tagging $\Rightarrow \sqrt{s} = 1$ GeV
- KLOE-2: $\sqrt{s} = M_{\phi} \Rightarrow$ Tagger is essential to reduce the background from the ϕ and to close the kinematics

10 -3

500

1000

- If $\sqrt{s} \rightarrow 1.4 \text{ GeV} \Rightarrow \gamma \gamma$ coupling of $a_0(980), f_0(980)$

Wyy (MeV)

 $\gamma\gamma \rightarrow \sigma(600) \rightarrow \pi\pi$

Motivations: pole in the $\pi\pi$ scattering with vacuum quantum numbers (J^{PC}=0⁺⁺) $m_{\sigma} = 441^{+16}_{-8}$ MeV, $\Gamma_{\sigma} = 544^{+24}_{-18}$ MeV [Caprini et al., PRL96(2006)132001]

- Observations by E791 in D⁺ $\rightarrow \pi^{+}\pi^{-}$ (m_{σ}=478 MeV, Γ_{σ} =324 MeV) and BES II in J/ $\psi \rightarrow \omega \pi^{+}\pi^{-}$ (m_{σ}=541±39 MeV, Γ_{σ} =504±84 MeV) (and by FOCUS, CLEO)
- Indirect $\sigma(600)$ evidence in $e^+e^- \rightarrow \pi^0 \pi^0 \gamma$ Dalitz plot by KLOE
- $e^+e^- \rightarrow e^+e^-\pi\pi$

 $\gamma\gamma \rightarrow \sigma(600) \rightarrow \pi\pi$

Motivations: pole in the $\pi\pi$ scattering with vacuum quantum numbers (J^{PC}=0⁺⁺) $m_{\sigma} = 441^{+16}_{-8} \text{MeV}, \Gamma_{\sigma} = 544^{+24}_{-18} \text{MeV}$ [Caprini et al., PRL96(2006)132001]

- Observations by E791 in D⁺ $\rightarrow \pi^{+}\pi^{-}$ (m_{σ}=478 MeV, Γ_{σ} =324 MeV) and BES II in J/ $\psi \rightarrow \omega \pi^{+}\pi^{-}$ (m_{σ}=541±39 MeV, Γ_{σ} =504±84 MeV) (and by FOCUS, CLEO)
- Indirect $\sigma(600)$ evidence in $e^+e^- \rightarrow \pi^0 \pi^0 \gamma$ Dalitz plot by KLOE
- $e^+e^- \rightarrow e^+e^-\pi\pi$

 $\pi^0 \pi^0 \Rightarrow$ golden channel

 $\pi^+\pi^-$: large background from $e^+e^- \rightarrow e^+e^-\mu^+\mu^-$ and from $e^+e^- \rightarrow \pi^+\pi^-\gamma^* \rightarrow \pi^+\pi^-e^+e^-$

ICHEP 2010 – 23 July 2010

- KLOE: 240 pb⁻¹ off-peak ($\sqrt{s} = 1$ GeV) no e^{\pm} tagging
- ~ 10000 events with 4 prompt γ 's
- ~ 4000 events after bckg subtraction
- $\gamma\gamma \rightarrow \pi^0 \pi^0$ cross-section evaluation in progress

KLOE-2: $O(10 \text{ fb}^{-1})$ at $\sqrt{s} = M_{\phi}$ with e^{\pm} tagging $\Rightarrow 2\%$ statistical accuracy using the same energy bin as Crystal Ball

γγ→single pseudoscalar

- Measurement of $\Gamma(P \rightarrow \gamma \gamma)$
- Transition form factors $\mathcal{F}_{P\gamma^*\gamma^*}(q_1^2,q_2^2)$:
 - input for the calculation of the Light-by-Light contribution to g-2 of the muon

γγ**→**η

- KLOE: 240 pb⁻¹ off-peak ($\sqrt{s} = 1$ GeV) without e^{\pm} tagging
- Selected decay channel: $\eta \rightarrow \pi^+ \pi^- \pi^0$
- Main bckg: $e^+e^- \rightarrow \eta\gamma \rightarrow \pi^+\pi^-\pi^0\gamma$
- Fit to η longitudinal momentum (p_L) and missing mass (M_{miss}) $\Rightarrow \sim 600$ events
- Extraction of $\sigma(e^+e^- \rightarrow e^+e^-\eta)$ and $\Gamma(\eta \rightarrow \gamma \gamma)$ in progress

$\sigma(e^+e^- \rightarrow hadr.)$ below 1 GeV

- ~ 3 σ discrepancy between a_{μ}^{SM} a_{μ}^{exp} [$a_{\mu} = (g_{\mu} 2)/2$]
- $a_{\mu}^{SM} = a_{\mu}^{QED} + a_{\mu}^{weak} + (a_{\mu}^{had}) \longrightarrow$ main contribution to the uncertainty on a_{μ}^{SM}

$$a_{\mu}^{\text{had, LO}} = 1 / (4\pi^3) \int_{4m_{\pi}^2}^{\infty} \sigma(e^+ e^- \rightarrow \text{hadr.}) \mathbf{K}(s) \, \mathrm{d}s \quad ; \quad \mathbf{K}(s) \sim 1 / s$$

- $\sigma(e^+e^- \rightarrow hadr.)$ below 1 GeV is dominated by $e^+e^- \rightarrow \pi^+\pi^-$
- ϕ factory: fixed $\sqrt{s} \Rightarrow$ Initial State Radiation method

• Two different analyses: (1) photon emitted at Small Angle (S.A. analysis) [PLB606(2005)12, PLB670(2009)285] (2) photon emitted at Large Angle (L.A. analysis) [arXiv:1006:5313, submitted to PLB]

P.Gauzzi

L.A. analysis

- 2 pions at large angle (9>50°)
- Photon detected at large angle (θ>50°)
- Kinematics closed
- Threshold region accessible
- Lower statistics
- Larger contribution from FSR Larger background from $\phi \rightarrow \pi^+ \pi^- \pi^0$ Irreducible background from $\phi \rightarrow f_0 \gamma \rightarrow \pi^+ \pi^- \gamma$

Use data collected at $\sqrt{s} = 1$ GeV, below the ϕ peak: 233 pb⁻¹ from 2006 data-taking

Prospects on σ_{had}

• In progress: $|\mathbf{F}_{\pi}|^2$ from the ratio $\sigma(e^+e^- \rightarrow \pi^+\pi^-\gamma)/\sigma(e^+e^- \rightarrow \mu^+\mu^-\gamma)$

- Many factors cancel in the ratio:
 - radiator function
 - luminosity from Bhabhas
 - vacuum polarization

• KLOE-2:

δσ ~ 0.4% for √s < 1 GeV with ISR @ 1 GeV, 2 fb⁻¹ δσ ~ 2% for 1 < √s < 2 GeV with energy scan (if DAΦNE energy → 2 - 2.5 GeV)

- Important results have been achieved by KLOE in hadron physics:
 - η rare decays: $\eta \rightarrow \pi^+\pi^-\gamma$, $\eta \rightarrow \pi^+\pi^-e^+e^-$, $\eta \rightarrow e^+e^-e^+e^-$
 - Dalitz plot of $\eta \rightarrow 3\pi$
 - η−η' mixing and gluonium in η'; η→π⁰γγ,
 - Precision measurements of $Br(\phi \rightarrow f_0(980)\gamma)$ and $Br(\phi \rightarrow a_0(980)\gamma)$ and of the scalar resonance parameters
 - Upper limit for $\phi \rightarrow (f_0/a_0)\gamma \rightarrow \mathrm{K}^0 \overline{\mathrm{K}}^0 \gamma$
 - $-\gamma\gamma$ physics: $\gamma\gamma \rightarrow \pi^0\pi^0$ and $\gamma\gamma \rightarrow \eta$ at $\sqrt{s} = 1$ GeV
 - $-\sigma(e^+e^- \rightarrow \text{hadr.})$ with ISR: Small Angle + Large Angle analyses confirm the 3.2 σ discrepancy between a_{μ}^{SM} and a_{μ}^{exp}
- KLOE-2 data-taking start in September 2010: $-e^{\pm}$ taggers for $\gamma\gamma$ physics are being installed

– possibility of new and more precise measurements in hadron physics P.Gauzzi
ICHEP 2010 – 23 July 2010

KLOE-2 physics program

Goal: ~20 fb⁻¹ in the next 3 – 4 years to extend the KLOE physics program at DAΦNE upgraded in luminosity (approved) and energy up to 2.4 GeV (under discussion): G.Amelino-Camelia et al., arXiv:1003.3868,

- γγ physics
- Light meson spectroscopy

Kaon physics

- Dark matter searches
- Hadronic cross section

G.Amelino-Camelia et al., arXiv:1003.3868, DOI:10.1140/epjc/s10052-010-1351-1

- Existence (and properties) of $\sigma(600)$
- Study of $\Gamma(S/P \rightarrow \gamma \gamma)$
- P transition form factor
- Properties of scalar/vector mesons
- Rare η decays
- η^\prime physics
- Test of CPT (and QM) in correlated kaon decays
- Test of CPT in K_S semileptonic decays
- Test of SM (CKM unitarity, lepton universality)
- Test of χPT (K_S decays)
- Light bosons @ O(1 GeV)
- $\alpha_{em}(M_Z)$ and $(g_{\mu}-2)$

Spare slides

P.Gauzzi

Result on L.A. analysis

 Good agreement between S.A. (KLOE08) and L.A. (KLOE09) analyses

 $a_{\mu}^{\pi\pi}(0.1-0.85 \text{ GeV}^2) = (478.5 \pm 2.0_{\text{stat}} \pm 4.8_{\text{sys}} \pm 2.9_{\text{theo}}) \times$ [arXiv:1006:5313, submitted to PLB] $\times 10^{-10}$

- Agreement with CMD-2 and SND, some difference ²⁰/₂₀
 with BaBar 15
- 3.2 σ discrepancy a_{μ}^{SM} a_{μ}^{exp} confirmed
- In progress: measurement of the $\sigma(e^+e^- \rightarrow \pi^+\pi^-)$ from the ratio $\pi^+\pi^-\gamma / \mu^+\mu^-\gamma$ (radiator function, int. luminosity and vacuum polarization cancel)
- KLOE-2:

 $\delta\sigma \sim 0.4\%$ for $\sqrt{s} < 1$ GeV with ISR @ 1 GeV, 2 fb⁻¹

 $\delta \sigma \sim 2\%$ for $1 < \sqrt{s} < 2$ GeV with energy scan (if DA Φ NE energy $\rightarrow 2 - 2.5$ GeV)

KLOE-2

- Two step upgrade:
 - 1) First run (~ 5 fb⁻¹ in one year data-taking)
 - e^{\pm} taggers for $\gamma\gamma$ physics:
 - Low Energy Tagger (E_e=130-230 MeV) Inside KLOE
 - Calorimeters: LYSO + SiPM — High Energy Tagger (E_e > 400 MeV)
 - 11 m far from IP Scintillators + PMT
 - 2) Major upgrade (late 2011)
 - Inner tracker : 4 layers of cylindrical GEM
 - QCALT: W + scint. tiles + SiPM
 - CCAL : LYSO + APD

 $\eta \rightarrow e^+ e^- e^+ e^-$

- Never observed before Br < 6.9×10⁻⁵ @90%C.L. (CMD-2)
- Theoretical predictions: ~ 2.5 2.6 ×10⁻⁵
- Same data set analyzed for $\eta \rightarrow \pi^+ \pi^- e^+ e^-$
- MC simulation according to Bijnens and Persson [hep-ph/0106130]
- Fit with signal + background from continuum

 413 ± 31 events \Rightarrow first evidence

S.A. analysis

- 2 pions at large angle (9>50°)
- Photon at small angle (9<15° not detected) to reduce FSR
- 240 pb⁻¹ from 2002 data-taking

ICHEP 2010 - 23 July 2010

Result on L.A. analysis

Table of systematic errors on $a_{\mu}^{\pi\pi}$ (0.1-0.85 GeV²):

Reconstruction Filter	< 0.1%
Background	0.5%
$f_0 + \rho \pi$	0.4%
Omega	0.2%
Trackmass	0.5%
π /e-ID and TCA	< 0.1%
Tracking	0.3%
Trigger	0.2%
Acceptance	0.4%
Unfolding	negligible
Software Trigger	0.1%
$\begin{array}{c} \text{Luminosity}(0.1_{\text{th}} \oplus \\ 0.3_{\text{exp}})\% \end{array}$	0.3%
experimental fractional	error on $a_{\mu}^{\pi\pi} = 1.0$ %
FSR resummation	0.3%
Radiator H	0.5%
Vacuum polarization	< 0.1%

theoretical fractional error on $a_{\mu}^{\ \pi\pi} = 0.6$ %

P.Gauzzi

 $a_{\mu}^{\pi\pi}$ (0.1–0.85 GeV²) = (478.5 ± 2.0_{stat}±4.8_{sys} ±2.9_{theo}) × 10⁻¹⁰

- Good agreement below the ρ peak
- Above the ρ peak KLOE slightly lower

KLOE vs BaBar

(Grey band = KLOE error)

Good agreement below 0.6 GeV
Above 0.6 GeV BaBar higher by 2-3%

$a_{\mu}^{\ \pi\pi}$ for different expt.

 $a_{\mu}^{\pi\pi}$ (0.35-0.85GeV²):

KLOE08 (small angle)

KLOE09 (large angle)

 $a_{\mu}^{\pi\pi}$ (0.152-0.270 GeV²):

KLOE09 (large angle)

CMD-2

a_μ^{ππ}(0.397-0.918 GeV²): KLOE08 (small angle)

CMD-2

SND

BaBar

$$a_{\mu}^{\pi\pi} = (379.6 \pm 0.4_{\text{stat}} \pm 2.4_{\text{sys}} \pm 2.2_{\text{theo}}) \cdot 10^{-10}$$

$$a_{\mu}^{\pi\pi}$$
 = (376.6 ± 0.9_{stat}±2.4_{sys} ±2.1_{theo}) · 10⁻¹⁰

$$a_{\mu}^{\pi\pi} = (48.1 \pm 1.2_{\text{stat}} \pm 1.2_{\text{sys}} \pm 0.4_{\text{theo}}) \cdot 10^{-10}$$

$$a_{\mu}^{\pi\pi}$$
 = (46.2 ± 1.0_{stat}±0.3_{sys}) · 10⁻¹⁰

$$a_{\mu}^{\pi\pi} = (356.7 \pm 0.4_{\text{stat}} \pm 3.1_{\text{sys}}) \cdot 10^{-10}$$

$$a_{\mu}^{\pi\pi}$$
 = (361.5 ± 1.7_{stat}±2.9_{sys}) · 10⁻¹⁰

$$a_{\mu}^{\pi\pi}$$
 = (361.0 ± 2.0_{stat}±4.7_{sys}) · 10⁻¹⁰

$$a_{\mu}^{\pi\pi}$$
 = (365.2 ± 1.9_{stat}±1.9_{sys}) · 10⁻¹⁰

 $f_0(980), a_0(980)$

- Measurement of Br(φ→Sγ→PPγ) and extraction of the parameters from fit of the Dalitz Plot or invariant mass distributions
- Hints for the $\sigma(600)$ presence in $\pi^0\pi^0\gamma$ Dalitz plot

PLB634(2006)148 EPJC49(2007)473 NPB(PS)186(2009)290 PLB681(2009)5

• $\psi \rightarrow (\eta_0/\alpha_0) \gamma \rightarrow \mathbf{I} \mathbf{X} \mathbf{I} \mathbf{Y}$	
$T = \frac{10^{-8}}{10^{-8}}$	Para
$Br(\phi \to K^*K^*\gamma) < 1.8 \times 10^{-5}$	M _s (
@ 90% C.L.	g _{oww}
[PLB679(2009)10]	SSKK
	SCPP

 $\phi \to (f | a) \to \mathbf{K}^0 \overline{\mathbf{K}}^0 \sigma$

Parameter	$\pi^+\pi^-\gamma$	$π^0 π^0 γ$	$η π^0 γ$
M _S (MeV)	983.7	984.7 ± 1.9 mod	$982.5\pm1.6\pm1.1$
g _{SKK} (GeV)	4.74	$\textbf{3.97} \pm \textbf{0.43}_{mod}$	$\textbf{2.15} \pm \textbf{0.06} \pm \textbf{0.06}$
g _{SPP} (GeV)	-2.22	$-1.82{\pm}~0.19_{\rm mod}$	$\textbf{2.82} \pm \textbf{0.03} \pm \textbf{0.04}$
g_{SKK}^2 / g_{SPP}^2	~4.6	~4.8	~0.6

• **KLOE-2**:

 $-O(10 \text{ fb}^{-1}) \Rightarrow$ sensitivity to $Br(\phi \rightarrow KK\gamma) \rightarrow \sim 10^{-8}$

with IT \Rightarrow " $\sim 0.5 \times 10^{-8} \Rightarrow$ first observation possible

- contributions of $f_0(980)$, $a_0(980)$, $\sigma(600)$ exchanges in $\eta' \rightarrow \eta \pi \pi$ decays [Fariborz-Schechter PRD60(1999)034002]
- $-a_0(980)$ parameters can be improved

 $e^+e^- \rightarrow \pi^0\pi^0\gamma$: $f_0(980)$

(σ with fixed parameters),

"No structure" with $f_0(980)$ only

600) fixed parameters : hasov,Kiselev,PRD73(2006)054029] $_{\sigma}$ =462 MeV; Γ_{σ} =286 MeV _{5K+K-}=0.5 GeV $\mathbf{g}_{\sigma\pi+\pi-} = 2.4 \text{ GeV}$

			1 🔁
$f_0(980)$ param.	KL model	NS model	2
M _{f0} (MeV)	976.8 ± 0.3 ^{+10.1} _{-0.6}	$984.7 \pm 0.4^{+2.4}_{-3.7}$	-
$g_{\phi f \gamma}$ (GeV-1)	$2.78^{+0.02}_{-0.05}^{+1.32}_{-0.05}$	$2.61 \pm 0.02^{+0.31}_{-0.08}$	وربينيا 0 0.1
$g_{f\pi+\pi-}$ (GeV)	$-1.43 \pm 0.01^{+0.03}_{-0.60}$	$1.31 \pm 0.01^{+0.09}_{-0.03}$	
g _{fK+K-} (GeV)	$3.76 \pm 0.04 + 1.17_{-0.49}$	$0.40 \pm 0.04^{+0.62}_{-0.29}$	σ(
$(g_{fK+K-}/g_{f\pi+\pi})^2$	~ 6.9	~ 0.09	M
$P(\gamma^2)$	14.5 %	4.2 %	g _σ

• KL fit without $\sigma(600) \implies P(\chi^2) \rightarrow 10^{-4}$

• Data sample: 450 pb⁻¹ $\Rightarrow \sim 4 \times 10^5$ events

• Two contributions: $\phi \rightarrow S\gamma$ and $e^+e^- \rightarrow \omega \pi^0$

P.Gauzzi

 $Br(\phi \to S\gamma \to \pi^0 \pi^0 \gamma) = (1.07 + 0.01 + 0.04 + 0.05) - 0.03(fit) - 0.02(syst) - 0.06(mod)$

$f_0(980)$ parameters

- Fit the $\pi^0 \pi^0 \gamma$ Dalitz plot and the M($\pi^+\pi^-$) distribution with the same scalar amplitude (with $\sigma(600)$ with fixed parameters)
- Latest version of the Kaon Loop model [N.Achasov]

$f_0(980)$ param.	$f_0 \rightarrow \pi^0 \pi^0$	$f_0 \rightarrow \pi^+ \pi^-$
M _{f0} (MeV)	984.7	983.7
$g_{f0\pi+\pi-}$ (GeV	-1.82	-2.22
g _{f0K+K-} (GeV)	3.97	4.74
$R = (g_{f0K+K-}/g_{f0\pi+\pi-})^2$	~ 4.8	~ 4.6

	$f_0 \rightarrow \pi^0 \pi^0$	$f_0 \rightarrow \pi^+ \pi^-$
$g_{\phi f 0 \gamma}$ (GeV-1)	$\textbf{2.61} \pm \textbf{0.02}^{+0.31}_{-0.08}$	1.2 - 2.0

σ(600) fixed parameters : $M_σ = 462 \text{ MeV}; \Gamma_σ = 286 \text{ MeV}$ $g_{\sigma K+K-} = 0.5 \text{ GeV}$ $g_{\sigma \pi+\pi-} = 2.4 \text{ GeV}$ Achasov,Kiselev,PRD73(2006)054029

Agreement between the two channels Next: combined fit

 g_{φf0γ} from fit to No Structure model (point-like coupling φf₀γ)
 [G.Isidori, L.Maiani et al., JHEP0605(2006)049]

Fit results

P.Gauzzi

37

π

FSR

π

ρπ

 \Rightarrow 6.7×10⁵ events selected

F-B asymmetry

*C*_{ππ} = +1

• $f_0(980)$ evidence at M($\pi\pi$) \approx 980 MeV

• Simulation with f_0 and σ parameters from $\pi^0\pi^0\gamma$ analysis

[Pancheri, Shekhovtsova Venanzoni, arXiv0706.3027]

 Recent analysis by A.Gallegos et al. [arXiv:0908]:
 comparison of KLOE data with 4 different models: KL, RχPT, UχPT and LσM P.Gauzzi

Unfolded $M_{\eta\pi}$ distribution

- To allow better comparison with other experimental results and theoretical models ⇒ unfolding procedure to correct data for detector and resolution effects
- Bayesian unfolding (avoids smearing matrix inversion)
 [G.D'Agostini, NIM A362 (1995), 487]
- Average of the two $M_{\eta\pi}$ distributions

 $\phi \rightarrow \eta \pi^0 \gamma$: $a_0(980)$

1) $\eta \rightarrow \gamma \gamma$ (Br=38.31%) \Rightarrow 5 photon final state Total background = 55%

$$Br(\phi \to \eta \pi^0 \gamma) = (7.01 \pm 0.10_{stat} \pm 0.20_{syst}) \times 10^{-5}$$

2) $\eta \rightarrow \pi^+ \pi^- \pi^0$ (Br=22.73%) $\Rightarrow 5\gamma + 2$ tracks Total background = 15%

 $Br(\phi \rightarrow \eta \pi^0 \gamma) = (7.12 \pm 0.13_{stat} \pm 0.22_{syst}) \times 10^{-5}$

- Combined fit of the two $M(\eta \pi^0)$ distributions
 - $\Rightarrow \text{ Free parameter: } \mathbf{R}_{\eta} = \mathbf{Br}(\eta \rightarrow \gamma \gamma) / \mathbf{Br}(\eta \rightarrow \pi^{+} \pi^{-} \pi^{0})$

	KL	NS	
M _{a0} (MeV)	$982.5 \pm 1.6 \pm 1.1$	982.5 (fixed)	
g _{a K+K-} (GeV)	$2.15 \pm 0.06 \pm 0.06$	$2.01 \pm 0.07 \pm 0.28$	
$g_{a\eta\pi}$ (GeV)	$2.82 \pm 0.03 \pm 0.04$	$2.46 \pm 0.08 \pm 0.11$	
$g_{\phi a\gamma} (\text{GeV}^1)$	$1.58 \pm 0.10 \pm 0.16$	$1.83 \pm 0.03 \pm 0.08$	M _{a0}
$Br(VDM) \times 10^6$	$\textbf{0.92} \pm \textbf{0.40} \pm \textbf{0.15}$	~ 0	$\Gamma_{tot}($
R _η	$1.70 \pm 0.04 \pm 0.03$	$1.70 \pm 0.03 \pm 0.01$	(PD
$\mathbf{R}=(\mathbf{g}_{\mathbf{a}\mathbf{K}+\mathbf{K}-}/\mathbf{g}_{\mathbf{a}\mathbf{\eta}\pi})^2$	$0.58 \pm 0.03 \pm 0.03$	$0.67 \pm 0.06 \pm 0.13$	• VE
$\mathbf{P}(\chi^2)$	10.4%	30.9%	• P D

a_0 and f_0 couplings

		SU(3)		
		4 q	4q qqbar	
$(g_{a0K+K-}/g_{a0\eta\pi})^2$	0.6 - 0.7	1.2 – 1.7	0.4	
	Crystal Barrel: 0.525 ± 0.043			
	SND (2000) : 1.8 ± 2.5			
$(g_{f0K+K-}/g_{f0\pi+\pi-})^2$	4.6 - 4.8	>>1	$>> 1 (f_0 = ssbar)$	1/4 (f ₀ =nnbar)
	CMD-2 (1999) : 3.61 ± 0.62			
	SND (2000) : 4.6 ± 0.8			
	BES (2005) : 4.21 ± 0.33			
$(g_{f0K+K-}/g_{a0K+K-})^2$	4-5	1	2	1

• Large $g_{\phi S\gamma} \Rightarrow$ sizeable *s* quark content ?

Meson	$g_{\phi M\gamma}(GeV^{-1})$
π^0	0.13
η	0.71
η΄	0.75
<i>a</i> ₀ (980)	1.6 – 1.8
<i>f</i> ₀ (980)	1.2 – 2.8

P.Gauzzi

80 60

40

20 990

4000

1000

bkg MC

1010

1020

1030

1040

- Small phase space($2M_{K} \leq M_{KK} \leq M_{h}$) \Rightarrow small Br expected $(10^{-9} - 10^{-7})$
- "Golden channel" $\phi \to K_S K_S \gamma \to \pi^+ \pi^- \pi^+ \pi^- \gamma$
- Analyzed sample: 2.18 fb⁻¹
- 5 events in data and 3.2 background events (MC) $(\pi^+\pi^-\pi^+\pi^-(\gamma) \text{ from } \phi \rightarrow K_S K_L \text{ and from continuum})$

$$Br(\phi \rightarrow K^0 \overline{K}^0 \gamma) < 1.9 \times 10^{-8} @ 90\% C.L$$

[PLB679(2009),10]

- Consistency check: using the KLOE couplings from $\phi \rightarrow \pi \pi \gamma$, $\eta \pi^0 \gamma$ in the Kaon Loop model
- $\Rightarrow \operatorname{Br}(\phi \to \mathrm{K}^{0} \overline{\mathrm{K}}^{0} \gamma) = 4 \times 10^{-9} 6.8 \times 10^{-8}$
- KLOE-2 sensitivity (with Inner Tracker) $\Rightarrow 0.5 \times 10^{-8}$ \Rightarrow First observation possible

P.Gauzzi

*a*₀(980) shape

• 600 pb⁻¹ with
$$1000 < \sqrt{s} < 1030 \text{ MeV}$$

• Interference with $\phi \rightarrow \omega \pi^0$ (OZI and G-parity viol.)

 $e^+e^- \rightarrow \omega \pi^0$

 $\sigma_{\rm vis}(\sqrt{s}) = \sigma_{\rm nr}(\sqrt{s}) \left(1 - Z \frac{M_{\phi} \Gamma_{\phi}}{D_{\phi}(\sqrt{s})}\right)$

$$\boldsymbol{\sigma}_{\rm nr}(\sqrt{\rm s}) = \boldsymbol{\sigma}_0 + \boldsymbol{\sigma}' \cdot (\sqrt{\rm s} - {\rm M}_{\phi})$$

Parameter	$e^+e^- \rightarrow \pi^+\pi^-\pi^0\pi^0$	$e^+e^- \rightarrow \pi^0 \pi^0 \gamma$
σ ₀ [nb]	$7.89 \pm 0.06 \pm 0.07$	$0.724 \pm 0.010 \pm 0.003$
$\Re e(Z)$	$0.106 \pm 0.007 \pm 0.004$	$0.011 \pm 0.015 \pm 0.006$
$\Im m(Z)$	$-0.103 \pm 0.004 \pm 0.003$	$-0.154 \pm 0.007 \pm 0.004$
σ' [nb/MeV]	$0.064 \pm 0.003 \pm 0.001$	$0.0053 \pm 0.0005 \pm 0.0002$

• From $\sigma_0(\pi^0\gamma)/\sigma_0(\pi^+\pi^-\pi^0)$ (with rare Br's from PDG)

Br($\omega \rightarrow \pi^+ \pi^- \pi^0$) = (90.24 ± 0.19)%

Br($\omega \rightarrow \pi^0 \gamma$) = (8.09 ± 0.14)% (~3 σ from PDG) (8.92 ± 0.24)%

 $\Rightarrow Br(\phi \rightarrow \omega \pi^0) = (4.4 \pm 0.6) \times 10^{-5}$

η**→**⁄

Mixing η/η'

Final state: $\pi^+\pi^- + 7 \gamma$

•
$$\phi \rightarrow \eta' \gamma; \eta' \rightarrow \eta \pi^+ \pi^-; \eta \rightarrow \pi^0 \pi^0 \pi^0$$

 $\eta' \rightarrow \eta \pi^0 \pi^0; \eta \rightarrow \pi^+ \pi^- \pi^0$
• $\phi \rightarrow \eta \gamma; \eta \rightarrow \pi^0 \pi^0 \pi^0$

$$\mathbf{R} = \frac{\mathbf{Br}(\phi \to \eta' \gamma)}{\mathbf{Br}(\phi \to \eta \gamma)} = (4.77 \pm 0.09 \pm 0.19) \times 10^{-3}$$

[systematics dominated by $\delta Br(\eta' \rightarrow \eta \pi \pi) = 3\%$]

 \Rightarrow Br($\phi \rightarrow \eta' \gamma$) = (6.20±0.11±0.15)×10⁻⁵

• Pseudoscalar mixing angle: $(|q\overline{q}\rangle = \frac{1}{\sqrt{2}} (|u\overline{u}\rangle + |d\overline{d}\rangle))$ $\eta = \cos \varphi_{P} |q\overline{q}\rangle - \sin \varphi_{P} |s\overline{s}\rangle$ $\eta' = \sin \varphi_{P} |q\overline{q}\rangle + \cos \varphi_{P} |s\overline{s}\rangle$

$$\mathbf{R} = \cot^2 \varphi_{\mathbf{P}} \left(1 - \frac{\mathbf{m}_{\mathbf{s}}}{\overline{\mathbf{m}}} \cdot \frac{\mathbf{C}_{\mathbf{NS}}}{\mathbf{C}_{\mathbf{S}}} \cdot \frac{\tan \varphi_{\mathbf{V}}}{\sin 2\varphi_{\mathbf{P}}} \right)^2 \cdot \left(\frac{\mathbf{p}_{\mathbf{\eta}'}}{\mathbf{p}_{\mathbf{\eta}}} \right)^3$$

 $\varphi_{P} = (41.4 \pm 0.3 \pm 0.9)^{\circ} \implies \vartheta_{P} = (-13.3 \pm 0.3 \pm 0.9)^{\circ}$

L= 427 pb⁻¹ $N_{\eta'\gamma} = 3407 \pm 61 \pm 43$ ev. $N_{\eta\gamma} = 16.7 \times 10^{6}$ ev.

Inv.mass of $\pi^+\pi^-$ + 6γ out of 7

[PLB648(2007)267]

η^\prime gluonium content

$\eta' = \mathbf{X}_{\eta'} \left \mathbf{q} \overline{\mathbf{q}} \right\rangle + \mathbf{Y}_{\eta'} \left \mathbf{s} \overline{\mathbf{s}} \right\rangle + \mathbf{Z}_{\eta'}$	$ \mathbf{G}\rangle \qquad \mathbf{New fit:} \qquad \mathbf{R} = \cot^2 \varphi_{\mathrm{P}} \cos^2 \varphi_{\mathrm{G}} \left(1 - \frac{\mathbf{m}_{\mathrm{s}}}{\overline{\mathbf{m}}} \cdot \frac{\mathbf{C}_{\mathrm{NS}}}{\mathbf{C}_{\mathrm{s}}} \cdot \frac{\tan \varphi_{\mathrm{V}}}{\sin 2 \varphi_{\mathrm{P}}}\right)^2$	$\left(\frac{\mathbf{p}_{\eta'}}{\mathbf{p}_{\eta}}\right)^{3}$
$\mathbf{X}_{\mathbf{\eta}'} = \cos\varphi_{\mathbf{G}}\sin\varphi_{\mathbf{P}}$ $\mathbf{Y}_{\mathbf{\eta}'} = \cos\varphi_{\mathbf{G}}\cos\varphi_{\mathbf{P}}$	$\frac{\Gamma(\eta' \to \gamma\gamma)}{\Gamma(\pi^0 \to \gamma\gamma)}, \frac{\Gamma(\eta' \to \rho\gamma)}{\Gamma(\omega \to \pi^0\gamma)}, \frac{\Gamma(\eta' \to \omega\gamma)}{\Gamma(\omega \to \pi^0\gamma)}, \frac{\Gamma(\omega \to \eta\gamma)}{\Gamma(\omega \to \pi^0\gamma)}, $	PDG08+
$Z_{\eta'} = \sin \varphi_{G}$ [Rosner PRD27(1983) 1101, Kou PRD63(2001)54027]	$\frac{\Gamma(\rho \to \eta\gamma)}{\Gamma(\omega \to \pi^{0}\gamma)}, \frac{\Gamma(\phi \to \eta\gamma)}{\Gamma(\omega \to \pi^{0}\gamma)}, \frac{\Gamma(\phi \to \pi^{0}\gamma)}{\Gamma(\omega \to \pi^{0}\gamma)}, \frac{\Gamma(K^{*+} \to K^{+}\gamma)}{\Gamma(K^{*0} \to K^{0}\gamma)} \int 0$	KLOE ω→π ⁰ γ

$Z_{m'}^{2} = 0.5$	
0.45	$= 1 \left(\phi \rightarrow \eta \gamma \right) / 1 \left(\phi \rightarrow \eta \gamma \right) = 1 \left(\phi \rightarrow \eta \gamma \right) / 1 \left(\omega \rightarrow \pi^* \gamma \right)$
0.4	-
0.35	$\cdot \qquad \qquad$
0.3	
0.25	
0.2	. $\Gamma(\eta' \rightarrow \omega \gamma)/\Gamma(\omega \rightarrow \pi^0 \gamma)$
0.15	
0.1	- Γ(η'→ργ)/Γ(ω→π ⁰ γ)
0.05	
0 <mark>3</mark>) 32 34 36 38 40 42 44 46 48 50
	φ _P (°)
ease to	$4 - 5 \sigma$ [JHEP07(2009)105]

	New fit	PLB648	
Z_{η} . ²	0.12 ± 0.04	0.14 ± 0.04	
ϕ_P (deg.)	40.4 ± 0.6 39.7 ± 0.6		
C _{NS}	0.94 ±0.03	0.91 ± 0.05	
Cs	0.83 ± 0.05	$\textbf{0.89} \pm \textbf{0.07}$	
ϕ_V (deg.)	$\textbf{3.32} \pm \textbf{0.10}$	3.2	
m _s /m	$\boldsymbol{1.24 \pm 0.07}$	$\boldsymbol{1.24 \pm 0.07}$	
χ²/ndf	4.6/3	1.42 / 2	
$\mathbf{P}(\chi^2)$	20%	49%	

KLOE-2: by measuring the main η' Br's @ 1% \Rightarrow statistical significance of $Z_{\eta'}^2$ will increase to $4 - 5 \sigma$

•
$$\eta \rightarrow \pi \pi \pi$$
 decay \Rightarrow Isospin violation $L_{I} = -\frac{1}{2}(m_{u} - m_{d})(\overline{u}u - \overline{d}d)$

 $\phi \rightarrow \eta \gamma; \eta \rightarrow \pi^+ \pi^- \pi^0 \Rightarrow \pi^+ \pi^- + 3\gamma$ (E_{yrec} = 363 MeV) 450 pb⁻¹ \Rightarrow 1.34 × 10⁶ events in the Dalitz plot

$$X = \sqrt{3} \frac{E_{+} - E_{-}}{Q}; Y = 3 \frac{E_{0} - m_{0}}{Q}$$
$$(Q = m_{\eta} - 2m_{\pi^{\pm}} - m_{\pi^{0}})$$

c, *e* compatible with zero (C violation)
fit without cubic term (*f*Y³) ⇒ P(χ²) ~ 10⁻⁶

A(X,	$ Y ^2 =$	1+ <i>a</i> Y+ <i>b</i>	$Y^2 + cX + c$	$dX^2 + eX$	$Y + fY^3$
------	-----------	-------------------------	----------------	-------------	------------

a	$-1.090 \pm 0.005 ^{+0.008} .0.019$
b	$0.124 \pm 0.006 \pm 0.010$
С	$0.002 \pm 0.003 \pm 0.001$
d	$0.057 \pm 0.006 ^{+0.007}_{-0.016}$
е	$-0.006 \pm 0.007 ^{+0.005}_{-0.003}$
f	$0.14 \pm 0.01 \pm 0.02$
$P(\chi^2)$	73%

 $\eta \rightarrow \pi^+ \pi^- \pi^0$

• Asymmetries ⇔ C violation

• All asymmetries compatible with zero at 10⁻³ level

[JHEP0805(2008)006]

P.Gauzzi

51

$\eta \rightarrow \pi^0 \pi^0 \pi^0$: fit procedure

The fit is done using a binned likelihood approach

We obtain an estimate of α by minimizing

$$-\sum_{i}n_{i}\log(\mathbf{v}_{i}(\alpha))$$

Where:

- $n_i = recostructed events$
- v_i = for each MC event (according pure phase space):
- ✓ Evaluate its z_{true} and its z_{rec} (if any!)
- $\checkmark\,$ Enter an histogram with the value of z_{rec}
- ✓ Weight the entry with $1 + 2 \alpha z_{true}$
- ✓ Weight the event with the fraction of combinatorial background, for the signal (bkg) if it has correct (wrong) pairing

Dark Matter search

- **Recent unexpected astrophysical observations (PAMELA, ATIC, INTEGRAL**, **DAMA/LIBRA**) can be interpreted by assuming the existence of a low mass [O(1 GeV)] dark matter sector that interacts with SM particles through a mixing of a new gauge field, U, with hypercharge [Essig et al., arXiv:0903.3941]
- **Possible signatures:**
 - if $m_U < M_{\oplus} \Rightarrow e^+e^- \rightarrow U\gamma \rightarrow \ell^+\ell^-\gamma \Rightarrow$ resonances in $\ell^+\ell^-$ invariant mass
 - if there is a Higgs-like particle (h') in the dark sector, with $m_{h'} < M_{\Phi}$ higgs'-strahlung $e^+e^- \rightarrow U^* \rightarrow Uh'$, with $U \rightarrow \ell^+\ell^$ two leptons + missing energy (h' undetected)
 - if $m_{h'} < 2 m_{U} \Rightarrow$ multilepton events

If mixing parameter $k \rightarrow 10^{-2} - 10^{-3} \Rightarrow \sigma \sim 1$ pb (observable at KLOE-2)