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Why NLO corrections? 

• To get the region of application of the leading-order evolution equation

• The argument of the coupling constant in the BK equation is left undetermined in the leading order

Theoretical viewpoint, we need to know whether the coupling constant is determined by the size of 

the original dipole or of the size of the produced dipoles since we may get a very different behavior 

of the solution of the BK equation. 

Experimental viewpoint, the cross section is proportional to some power of the coupling constant so 

the argument of the coupling constant determines how big (or how small) the cross section is. 

Conclusions 

Composite operators: due to the loss of conformal invariance of the Wilson line operator in the NLO. 

Wilson line operators are formally conformal invariant, but at NLO they are divergent and their 

regularization introduces a dependence on the rapidity and conformal symmetry is lost. In order to 

restore the conformal invariance we redefine the operator by adding suitable counterterms. 

• High-energy operator expansion in color dipoles works at the NLO level.

• The NLO BK kernel in for the evolution of conformal composite dipoles in N=4 SYM

is Mobius invariant in the transverse plane.

• The NLO BK kernel agrees with NLO BFKL eigenvalues.

• In QCD, the NLO kernel for the composite operators resolves in a sum of the conformal part and 

the running-coupling part.

• The analytic expression for the NLO photon impact factor is calculated for the first time.

NLO Photon Impact Factor Diagrams

∼ 100s Diagrams

Scattering processes play a central role in physics, and high-energies experiments give us an 

insight into the fine structure of matter. The high-energy behavior of amplitudes in gauge theories 

can be reformulated in terms of the evolution of Wilson-line operators. In the leading order this 

evolution is governed by the non-linear Balitsky-Kovchegov (BK) equation. In order to see if this 

equation is relevant for existing or future deep inelastic scattering (DIS) accelerators (like Electron 

Ion Collider (EIC) or Large Hadron electron Collider (LHeC)) one needs to know how large are the 

next-to-leading order (NLO) corrections. In addition, the NLO corrections define the scale of the 

running-coupling constant in the BK equation and therefore determine the magnitude of the leading-

order cross sections. We calculate the NLO kernel of the BK equation and also obtain the analytic 

expression for the NLO photon impact factor.

Introduction

Operator Product Expansion at High Energy (Regge limit)

At high-energy (Regge limit) it is natural to introduce a factorization scale in rapidity. Factorization in

rapidity means that one introduces a rapidity divide h which separate "fast" field from "slow" fields. 

Thus, the amplitude of the process can be represented as a convolution of contributions coming 

from fields with rapidity h < Y (“fast” field) and contributions coming from fields with rapidity h > Y 

(“slow” fields). As in the case of the usual OPE, the integration over the field with rapidity h < Y 
gives us the coefficients function (impact factor) while the integrations over the field with rapidity

h> Y are the matrix elements of the operators. The evolution of these operator in the leading order 

correspond to the non-linear Balitsky-Kovchegov evolution equation.

Y > h 

Y < h 

High-energy operator expansion in 

Wilson lines: dotted blue lines are 

the Wilson line operators, the 

coefficient function (impact factor) 

are the quark-antiquark pair 

propagating in the shock wave 

background (red strip).

High energy expansion of the F2(x) structure function in terms of Wilson line operators

Non-linear Balitsky-Kovchegov evolution equation

Balitsky (1996); Kovchegov (1999)

Typical diagrams in the shock 

wave background appearing in 

the leading order BK equation

The first three (linear) terms correspond to the linear BFKL evolution equation which is obtained in 

the Leading Logarithm Approximation (LLA) and describe the increase of the parton density and 

eventually to the violation of unitarity.  

The last (non-linear) term is responsible for the parton annihilation which tame the growth of the 

parton density thus, restoring the unitarization of the theory. Such term is obtained in the LLA for DIS 

at very high energy or large nuclei. 

DGLAP vs BFKL evolution equation

̂̂
High–Q2 evolution (DGLAP): Evolution towards dilute regime

High–energy evolution : Evolution towards high-density regime

dilute regime
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Leading-order diagrams for the BK equation
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Ûz4 Û

†
z3
} − (z4 → z3)]

}

KNLO BK = Running coupling part + Conformal ”non-analytic” (in j)
part + Conformal analytic (N = 4) part
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