ASTROPARTICLE PHYSICS WITH ARGO-YBJ EXPERIMENT

G. Marsella on behalf of ARGO-YBJ collaboration

Dipartimento di Ingegneria dell'Innovazione Università del Salento and INFN, Lecce, Italy

Outline

- Detector Layout
- The Moon Shadow
- Cosmic Rays
- Gamma Astronomy

ARGO-YBJ experiment

(A

 Radiation G erase 6 Obit
ARGO-YBJ

High Altitude Cosmic Ray Observatory @ YangBaJing Site altitude: $4,300 \mathrm{~m}$ a.s.I., $\sim 600 \mathrm{~g} / \mathrm{cm}^{2}$
Coordinates: longitude $90^{\circ} 31^{\prime} 50^{\prime \prime} \mathrm{E}$, latitude $30^{\circ} 06^{\prime} 38^{\prime \prime} \mathrm{N}$

ARGO-YBJ detector

Detector status

Detector completely installed since 2007 (central carpet + guard-ring, 153 clusters)

Data taking

since पuly 2006
since November 2007 with the guard-ring

Setup for analog charge readout installed on central carpet (130 cl)
In data taking with lowest gain scale (Trigger ≥ 73 hits/cl)

Experiment operation

Inclusive Trigger: $N_{\text {pad }}>20$ within $420 n s$ on the central carpet \Rightarrow rate $\sim 3.6 \mathrm{kHz}(\sim 220$ GBytes/day)

Detection of Extensive Air Showers (direction, size, core ...)
Aims: cosmichnay physics (threshold ~ 1 TeV) VHE Y-astronomy (threshold ~ 300. 6 eV) gamma-ray bursts

Scaler mode
counting rates ($\geq 1, \geq 2, \geq 3, \geq 4$ coincidences) for each cluster
Aims: detector and environment monitor
flaring phenomena (gamma ray bursts, solar flares) with a threshold of few GeV

Shower events

The number of pixels, the time resolution and the full coverage of the central carpet allow to reconstruct the shower with unprecedented details

The shadow of the Moon

The shadow of the Moon

A deficit in the cosmic ray flux is expected from the Moon direction.
Many items are related:

$>$ angular resolution (width of the deficit)
$>$ pointing accuracy (position of the deficit)
$>$ energy calibration (the westward deflection due to the geomagnetic field depends on the energy of cosmic rays)

$>$ proton/antiproton ratio (antiprotons are deflected eastward)

All data: $2006 \rightarrow 2009$
 $N>100 \quad \theta<50^{\circ}$

3200 hours on-source

≈ 9 standard deviations / month

The deficit surface is the convolution of the PSF of the detector and the widespread Moon disc.

$$
R M S \simeq \sigma \sqrt{1+\left(\frac{R}{2 \sigma}\right)^{2}}
$$

Moon Shadow analysis

Measured EW displacement

Measured angular resolution

1. From $M C$,

Antiproton/proton ratio

the fraction of protons to all cosmic rays. 70.9% for 50000>nHit > 100:
73.0\% for 100nnHit>60:
2. Considering the Boundary condition: $b>=0$; Using Feldman and Cousins statistics:

60<nHit<100 (median E ~2 TeV): 90\% C.L. Upper limit 4.2\% 100<nHit<50000 (median E ~5 TeV): 90\% C.L. Upper limit 7.4\%

Compute the 90% Upper limit!

1. Dashed lines: antistars models for different rigidity, $0.6,0.7$ respectively
2. Dotted line, the heavy DM particle contribution.
$10 \quad$ Paper being submitted

Flux attenuation and p-Air cross section

 Shower frequency vs $(\sec \theta-1)$:$$
I(\theta)=I(0) \cdot e^{-\frac{x_{o}}{\Lambda_{a b s}} \sec (\theta)^{-1}}
$$

\Downarrow
Measure the flux attenuation
 For fixed energies and shower ages:
$\Lambda_{a b s}=k \lambda_{\text {INT }}$
$\sigma_{p-A i r}[\mathrm{mb}]=2.4 \times 10^{4} / \lambda_{\mathrm{INT}}\left[g / \mathrm{cm}^{2}\right]$
$\sigma_{p-A i r} \| \sigma_{p-p}$
>k is determined by MC simulations, selecting energy and age ranges by means of the actual experimental observables (number of fired strips, hit density, lateral profile)

It depends on the interaction model details, but also on the set of experimental observables, energy, ...

Data selection

$>$ Event selection based on:

(a) "shower size" on detector, $\mathrm{N}_{\text {strip }}$ (strip multiplicity)
(b) core reconstructed in a fiducial area ($64 \times 64 \mathrm{~m}^{2}$)
(c) constraints on Strip density ($>0.2 / \mathrm{m}^{2}$ within R_{70}) and shower extension ($\mathrm{R}_{70}<30 \mathrm{~m}$)
$\mathbf{N}_{\text {strip }}$ is used to get defferent E sub-samples

Full Monte Carlo

 simulation:Corsika showers
QGSJET I and II, SYBILL
interaction models
GEANT detector simulation
R_{70} : radius of circle including 70\% of hits

Paris, ICHEP'10

Proton-Air cross section measurement

Phys. Rev. D 80, 092004 (2009)

Paris, ICHEP'10

Total p-p cross section

(inferred by means of the Glauber ${ }^{10}$ theory)

\checkmark No data from accelerators available at these energies
\checkmark The $\log ^{2}(s)$ asymptotic behaviour is favoured

Light-component spectrum of CRs

Measurement of the light-component ($\mathrm{p}+\mathrm{He}$) spectrum of primary CRs in the energy region (5-250) TeV via a Bayesian unfolding procedure

CNO < 2\%

Proton Sky Map:

Smoothing radius =5 Medium Scale Anisotropy two large ${ }_{\sim 0} 0.06 \%$ spots
$9 \cdot 10^{10}$ events

All sky survey result

- Method: Direct Integral method to estimate background.
- 3 sources with significance $>5 \sigma$
- Crab $14.5 \sigma, M r k 421$ 11.9 σ, MGRO1908+06 5.4σ

Crab Nebula

$N_{\text {PAD }}$	Events /day	$\mathrm{E}_{\text {med }}(\mathrm{TeV})$
$40-100$	128 ± 24	0.85
$100-300$	17.9 ± 6.3	1.8
>300	9.2 ± 2.3	5.2

NO selection ~ 14.5 s.d. in ~ 800 days
NO y / h discrimination

~ 50 \%
Crab/year
$\mathrm{dN} / \mathrm{dE}=(\mathbf{3 . 7 3} \pm \mathbf{0 . 8 0}) \cdot \mathbf{1 0}^{-11} \cdot \mathrm{E}^{-2.67 \pm 0.25} \mathrm{ev} \mathrm{cm}^{-2} \mathrm{~s}^{-1} \mathrm{TeV}^{-1}$

Mrk421

AGN monitored by ARGO-YBJ on a long time scale.
Several big flares have been observed :

1. June 2006
2. Oct. 2006
3. Feb.-Mar 2008
4. June 2008
5. June 2009
6. Feb 2010

The total significance is 12σ. So, Mrk421 is the best candidate for ARGO-YBJ to study the Blazar emission mechanism.

Mrk421 spectrum days 41 - 180, 2008

Mrk421: June 2008 flares

Observed from optical to TeV energies Donnarumma et al. ApJ 691 (2009) L13, data from:

- GASP-WEBT (R-band; May 24-June 23)
- SWIFT (UVOT \& XRT; June 12-13)
- AGILE (E > 100 MeV ; June 9-15)
- MAGIC and VERITAS (E > 400 GeV : May 27-June 8)
complemented by public data by RossiXTE/ASM (2-12 keV) and Swift/BAT (15-50 keV)

No VHE Cerenkov data after June 8

Mrk421: 2008 emission

10 days average

June 11-13
3.8σ

MGRO1908+06

- Discovered by Milagro, confirmed by HESS and VERITAS.
- Associated to the LAT pulsar with nebula PSR J1907.5+0602
- First Milagro result: compatible with point-like and extended source
- HESS result: shows that intrinsic extension is 0.34 deg and its spectral index is -2.1 up to 20 TeV without cutoff.
- But, Milagro result shows a spectrum cutoff at about 14 TeV and a flux higher than HESS result.
- ARGO-YBJ measurement about this source very important.
- A detailed systematic analysis aiming better understanding of spectra between experiments is undergoing .

Conclusions

\checkmark ARGO-YBJ detector (central carpet + guard ring) is taking data since November 2007 (duty-cycle > 90\%, 3.6 kHz rate)
\checkmark First results on Cosmic Rays (p-p cross section, anisotropies, limit on antiproton flux ...)
\checkmark First results on γ-astronomy (mainly 2-year data)

- angular resolution as expected (Moon shadow)
- Crab Nebula γ-spectrum in agreement with other measurements
- continuous monitor of Markarian 421, flares observed in 2006, 2008, 2009 and 2010 VHE γ-flux correlated with x-emission
- MGRO sources survey

Studies to increase the sensitivity are in progress

 (data quality, γ-hadron separation)