Lattice studies of hadron physics with disconnected quark loops

Takashi Kaneko

KEK Theory Center

ICHEP 2010, Jul 23, 2010

b. d. The b. d.

introduction

1. introduction

physics in "flavor-singlet sector"

- - masses, decay constants, vector form factors, bag parameters, ...

involves only connected diagrams / ignore disconnected diagrams

- disconnected quark loops : very expensive w/ conventional method 0
 - $\eta' \eta$ splitting :

related to axial anomaly / long-standing question on $U_A(1)$ problem

• $\omega - \phi$ (non-)mixing :

OZI suppression; how satisfied in the vector channel?

scalar form factors :

nucleon strange quark content

• σ meson :

not clearly observed; why?

 \Rightarrow improved methods

"gauge unfixed source" (Kuramashi, 1993): "noise method" (Dong-Liu, 1994) + improvements

- all-to-all propagator (TrinLat, 2005): applicable to arbitrary hadron observables
 - \Rightarrow JLQCD/TWQCD studies of various observables

introduction

1. introduction

this talk (w/ limited time)

physics with disconnected diagrams

⇒ JLQCD/TWQCD studies + comparison w/ recent other studies

outline

- introduction
- calculation of disconnected diagrams ٢
- flavor-singlet spectrum ٢
- pion scalar form factor 0
- nucleon strange quark content
- summary ۲

イロト イポト イヨト イヨト

2. calculation of disconnected diagrams

イロト イボト イヨト イヨ

Sar

2.1 conventional method

connected diagrams

quark propagators

$$\sum_{y} D(z,y) S_F(y,x) = \delta_{z,x} \quad \Rightarrow \quad S_F(y,x) = D^{-1}(y,x)$$

- "point-to-all" : from a fixed lattice site to any sites
- $\dim[D] \gtrsim 10^5 \ \Rightarrow \ D^{-1}$: time consuming
- hadron correlators : calculated by connecting S_F (w/ fixed hadron source / \sum_{y_k} = momentum projection)

disconnected diagrams

- need "all-to-all" propagator
 - = S_F from arbitrary source point x
 - naive calculation = solve linear eq. for all x
 - \Rightarrow prohibitively high CPU cost

need an effective way to calculate

 useful also for connected : can improve stat. accuracy by averaging over source location x

"source" x: fixed

2.2 all-to-all quark propagator

construction (TrinLat, 2005)

$$D^{-1}(x,y) = \sum_{k=1}^{12V} \frac{1}{\lambda_k} u_k(x) u_k^{\dagger}(y) = \sum_{k=1}^{N_e} \frac{1}{\lambda_k} u_k(x) u_k^{\dagger}(y) + \sum_{k=N_e+1}^{12V} \frac{1}{\lambda_k} u_k(x) u_k^{\dagger}(y)$$

- low-mode contribution

• dominate low-energy dynamics \Rightarrow evaluate exactly w/ N_e eigenmodes of D

$$D^{-1})_{\text{low}} = \sum_{k=1}^{N_e} \frac{1}{\lambda_k} u_k u_k^{\dagger}$$

- high-mode contribution
 - possibly small \Rightarrow estimated stochastically
 - eq. noise method (Dong-Liu, 1994): w/ N_r noise sources

$$D x_r = (1 - P_{\text{low}}) \eta_r \quad (r = 1, ..., N_r) \quad \Rightarrow \quad (D^{-1})_{\text{high}} = \frac{1}{N_r} \sum_{r=1}^{N_r} x_r \eta_r$$

- a key : low-modes of D
 - evaluate dominant contribution exactly
 - remarkably reduce CPU cost for small high-mode contribuion less noise samples ; speed-up in D^{-1} calculation イロト イポト イヨト イヨト 二日

2.3 JLQCD/TWQCD study

JLQCD/TWQCD study

- a systematic study of spectrum / MEs w/ all-to-all propagator
 - flavor-singlet spectrum ; pion EM / scalar form factors ; kaon EM / weak decay form factors; nucleon strange quark content
- overlap quark action (Narayanan-Neuberger, 1996) \Rightarrow exact chiral symmetry
 - comparison w/ ChPT at a=0
 - o continuum like renormalization ⇔ Wilson-type : complicated mixing

parameters

- $N_f = 2$, $N_f = 2 + 1$
- $a \approx 0.11$ fm, $L \sim 1.8$ fm (and $L \sim 2.6$ fm for $\langle N | \bar{s}s | N \rangle$)
- 4 m_l 's at 300 MeV $\lesssim M_\pi \lesssim 550$ MeV ; (N_f = 2 + 1) 2 m_s 's near $m_{s, {
 m phys}}$
- simulate fixed topological sectors \Rightarrow accelerate simulations
- $N_e \ge 100, N_r = 1$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

3. flavor-singlet spectrum

< = > < = > < = > < = >

990

3.1 intro.

neutral mesons $\bar{q}q$

- disconnected diagram ⇒ mass shift for neutral mesons
- $N_f = 2 + 1 \text{ QCD} \Rightarrow \text{mixing of octet and singlet mesons}$

$$\mathcal{L}_m = \sqrt{\frac{2}{3}} (2m_l + m_s) \, \bar{q}q + \frac{2}{\sqrt{3}} (m_l - m_s) \, \bar{q} \, T_8 q$$

pseudo-scalar (PS) mesons

• U(1) problem : $M'_{\eta} \gg M_{\eta} \iff$ disconnected diagrams

• previous LQCD studies : disconnected \Rightarrow mass shift $\Leftrightarrow \chi_t$?

• $N_f = 0$: Itoh-Iwasaki-Yoshié, 1987; Kuramashi et al., 1994, ...

- $N_f = 2$: UKQCD, 2000 ; SESAM-T χ L, 2001 ; CP-PACS, 2002 ; RBC, 2008 ; ETM, 2008
- N_f = 3 : octet-singlet mixing : only recently

vector mesons

- ideal mixing : $\omega \sim \bar{l}\gamma_k l$, $\phi \sim \bar{s}\gamma_k s \iff$ octet-singlet mixing
- no previous LQCD study ...

JLQCD/TWQCD : PS and vector mesons using all-to-all propagator

intro. vector mesons PS mesons

3.2 vector mesons : mixing

octet / singlet vector meson correlators

- octet / singlet meson
 - mesons w/ $T_{0.8}$ as flavor matrix

$$V_a = \bar{q}_i \gamma_\mu(T_a) q_j$$
$$G_{V,ab} = \langle V_a V_b^{\dagger} \rangle$$

- local and 4 smeared operators 0
 - \Rightarrow better overlap w/ ground state

 $\phi_{\rm smr}(\mathbf{r}) \, \bar{q}_i(\mathbf{x}) \gamma_\mu(T_a) \, q_i(\mathbf{x}+\mathbf{r})$

- generalized eigenvalue problem \Rightarrow energy eigen states, energies

T Kaneko

Lattice studies of hadron physics with disconnected quark loops

イロト イポト イヨト イヨト

3.2 vector mesons : mixing

light / strange vector meson correlators

light / strange meson mesons of specified flavor $V_l = \bar{l}\gamma_\mu l, \quad V_s = \bar{s}\gamma_\mu s$ $G_{Va'a} = \langle V_{a'} V_a^{\dagger} \rangle$

- V_8, V_0 mesons : off-diagonal \leq diagonal \Rightarrow significant mixing ?
- V_l, V_s mesons : off-diagonal \ll diagonal \Rightarrow small mixing ?
- generalized eigenvalue problem \Rightarrow energy eigen states, energies

T. Kaneko

 $\begin{cases} \phi = 0.84(5) V_8 - 0.55(7) V_0 \\ \omega = 0.55(7) V_8 + 0.84(5) V_0 \end{cases}$ $\begin{cases} \phi = 1.00(1) V_s - 0.04(9) V_l \\ \omega = 0.04(9) V_s + 1.00(1) V_l \end{cases}$

 \Rightarrow ideal mixing : $\theta_V = 39(3)^\circ \sim \text{OZI rule}$

・ロト ・ 理ト ・ ヨト ・ ヨト

3.2 vector mesons : ω , ϕ masses

effective masses for ω and ϕ

chiral extrapolation of M_{ϕ}

• $M_{\omega} \simeq M_{V_{l,\text{conn}}}$, $M_{\phi} \simeq M_{V_{s,\text{conn}}}$ ($M_{V_{q,\text{conn}}}$: mass w/o disconnected contribu.) \Rightarrow small ΔM from disconnected diagram $\Rightarrow M_{\omega} \sim M_{\rho}$;

- chiral extrap. : $M_{\phi(\omega)} = a_{\phi(\omega)} + b_{\phi(\omega)} m_l + c_{\phi(\omega)} m_s (+ d_{\phi(\omega)} m_l^{3/2})$
 - \Rightarrow consistent w/ experiment / \pm 4 % sys. error ($m_q^{3/2}$, input to fix a)

• $M_{\pi}L \sim 2.7$: finite volume effect ? \Rightarrow extending to a larger volume

3.3 PS mesons : mixing

P_l and P_s correlators

- $\left\{ \begin{array}{l} \eta = 0.96(1) \ P_l 0.28(3) \ P_s \\ \eta' = 0.28(3) \ P_l + 0.96(1) \ P_s \end{array} \right.$
- phenomenology : θ_P from $f_{\eta^{(\prime)} \to 2\gamma}$ (e.g. Feldmann, 1999; ...)
- calculation of $f_{l,s,0,8,\eta,\eta'}$: on-going

くロト くぼト くほと くまと

3

• fixed Q simulation : full correlator has a constant term (Aoki et al., 2007)

$$m_q^2 G_{P,qq}(\Delta t) = C \exp[-M\Delta t] + \frac{\chi_t}{V} \left(1 - \frac{Q^2}{\chi_t V} - \frac{c_4}{2\chi_t^2 V}\right)$$

- useful to determine χ_t (JLQCD/TWQCD, 2008)
- obstacle to determination of $M_{n(\prime)}$: limit region of exp. damping

simulation on a larger volume / in a non-trivial topological sector : on-going

3.3 PS mesons : η , η' masses

chiral behavior

- 10–15% stat error for $M_{\eta'}$
- fitted to a simple form :

$$M_{\eta^{(\prime)}} = a_{\eta^{(\prime)}} + b_{\eta^{(\prime)}} m_l + c_{\eta^{(\prime)}} m_s$$

• extrapolated values (results @ Lattice 2009 + update of a^{-1})

 $M_{\eta} = 611(36) \text{MeV} \Leftrightarrow 548 \text{MeV} (\text{expr't})$ $M_{\eta'} = 791(93) \text{MeV} \Leftrightarrow 958 \text{MeV} (\text{expr't})$

consistent w/ expr't within 6-12 % stat. error

• $\eta' - \eta$ splitting : clear at heavier m_l ; unclear at physical $m_{l,s}$ (2 σ deviation)

 $\leftarrow \ \ \text{constant term in disconnected correlator / larger statistical fluctuation}$

3.3 comparison with other studies

CP-PACS/JLQCD, 2006 (unpublished)

• $a^{-1} = 0.12 \text{ fm}, \ 16^3 \times 32, \ M_{\pi} \gtrsim 600 \text{ MeV}$

RBC/UKQCD, 2009

- odmain-wall quarks : good chiral sym.
- $a = 0.11 \text{ fm}, \quad 16^3 \times 32$
- $M_{\pi} = 421, 561, 672 \text{ MeV}$
 - $\Rightarrow M_{\pi}L \gtrsim 4$; chiral fit for η' ?
- brute force : D^{-1} at each time-slice

M_η and $M_{\eta'}$

• $\eta' - \eta$ splitting $\sim 2 \sigma$ level

 \Rightarrow to be improved

- JLQCD/TWQCD :
 - FVC @ $M_{\pi} \approx 300$ MeV / fixed Q \Rightarrow larger volume (on-going)
- RBC/UKQCD :
 - $\Delta M_{n'} \Rightarrow$ exact low-mode contribu.
 - smaller m_l

● independent calc. by other groups

Lattice studies of hadron physics with disconnected quark loops

4. pion scalar form factor

< = > < = > < = > < = >

990

4.1 intro.

pion scalar form factor $F_S(q^2)$

$$\langle \pi(p')|S|\pi(p')\rangle = F_S(q^2), \quad F_S(q^2) = 1 + (\langle r^2 \rangle_S/6) q^2 + O(q^4)$$

- chiral behavior of $\langle r^2 \rangle_S$
 - $N_f = 2 \text{ ChPT}$: determination of $l_4 \iff l_4$ from F_{π}
 - ×6 NLO chiral log : $-6/(4\pi F)^2 \ln[M_{\pi}^2] \iff \langle r^2 \rangle_V : -1/(4\pi F)^2 \ln[M_{\pi}^2]$
- Iattice calculation : challenging
 - o disconnected diagram
 - VEV subtraction

- few previous studies ignoring disconnected diagrams (JLQCD, 2005; ETM, BGR, 2007)
- JLQCD/TWQCD, 2009 ($N_f = 2$) : single calculation w/ disconnected diagram

4.2 at simulated m_q

ratio method

•
$$F_S(q^2)/F_S(q^2_{\rm ref}) \Rightarrow \langle r^2 \rangle_S$$

• ratio method (Hashimoto et al., 2000)

$$\begin{split} & \frac{C_{3\text{pt}}(\mathbf{p}, \mathbf{p}') C_{2\text{pt}}(\mathbf{p}_{\text{ref}}) C_{2pt}(\mathbf{p}'_{\text{ref}})}{C_{3\text{pt}}(\mathbf{p}_{\text{ref}}, \mathbf{p}'_{\text{ref}}) C_{2\text{pt}}(\mathbf{p}) C_{2pt}(\mathbf{p}')} \\ & \rightarrow \frac{F_S(q^2)}{F_S(q^{2\text{ref}})} \end{split}$$

• cancel
$$Z_S$$
, $e^{-E_{\pi}\Delta t}$, ...

$F_S(q^2)/F_S(q^2_{ m ref})$

- disconnected diagram ⇒ significant contribution
- employ a polynomial fit to parametrize q^2 -dependence
 - ${\ensuremath{\, \circ }}\ F_V(q^2)$: NNLO and higher contribution is not small at simulated q^2
 - cubic and quartic fits \Rightarrow reasonable χ^2 ; consistent $\langle r^2 \rangle_S$

・ロト ・ 同ト ・ ヨト ・ ヨト

Sar

4.3 chiral fit

one-loop ChPT ♦ N = 2 ChPT 0.8 0.6 [2] 0.4 ² 0.4 ² 0.2 -0.0 -0.2 0.1 0.2 M_{-}^{2} [GeV²] $\langle r^2 \rangle_s \quad = \quad \frac{1}{NF^2} (-\frac{13}{2} + 6Nl_4^r) + \frac{6}{NF^2} \ln \left[\frac{M_\pi^2}{\mu^2} \right] + "\text{NNLO} \log \text{sw} / l_{1,2,3,4}^r + \frac{6}{F^2} r_{S,r}^r$

 $(N\!=\!(4\pi)^2, \ \ \mu\!=\!4\pi F, \ \ F \ {\rm from} \ M_{\pi}, F_{\pi} \ \, ({\it JLQCD/TWQCD, 2006}) \,)$

• one-loop fit $\Rightarrow \chi^2/dof \sim 9$: fails to reproduce mild m_l dependence

• two-loop fit = simultaneous fit to $\langle r^2 \rangle_{S,V}, c_V \Rightarrow l^r_{\{4,1,2,3,6\}}, r^r_{\{S,V\},r}, r^r_{V,c}$

- fix $\bar{l}_2 = 4.31(11)$ (Colangelo et al., 2001), $\bar{l}_3 = 3.38(56)$ (JLQCD/TWQCD, 2008)
- \Rightarrow data are reasonably described by two-loop fit $\langle \Box \rangle \langle B \rangle \langle B \rangle \langle B \rangle \langle B \rangle$

4.3 chiral fit

• one-loop fit $\Rightarrow \chi^2/dof \sim 9$: fails to reproduce mild m_l dependence

- two-loop fit = simultaneous fit to $\langle r^2 \rangle_{S,V}, c_V \Rightarrow l_{\{4,1,2,3,6\}}^r, r_{\{5,V\},r}^r, r_{V,c}^r$ • fix $\bar{l}_2 = 4.31(11)$ (Colangelo et al., 2001), $\bar{l}_3 = 3.38(56)$ (JLQCD/TWQCD, 2008)
 - ⇒ data are reasonably well described by two-loop fit, (,, ,, ,, ,, ,, ,,)

4.3 summary numerical results

 $\langle r^2 \rangle_S = 0.617(79)(66) \text{ fm}^2, \ \langle r^2 \rangle_V = 0.409(23)(37) \text{ fm}^2, \ c_V = 3.22(17)(36) \text{ GeV}^{-4}$

 $\bar{l}_4 = 4.09(50)(52), \quad \bar{l}_1 - \bar{l}_2 = -2.9(0.9)(1.3), \quad r^r_{S,r} = 1.74(36)(78) \times 10^{-4}$

- sys. error : input to fix scale (r_0), input for $l_{2,3}$, chiral fit, discretization
- $\langle r^2 \rangle_{V,S}$, c_V : consistent with experiment $\langle r^2 \rangle_S = 0.61(4) \text{ fm}^2$ (Colangelo et al., 2001) $\langle r^2 \rangle_V = 0.437(16)$, $c_V = 3.85(60) \text{ GeV}^4$ (Bijnens et al.)
- $O(p^4)$ couplings : consistent with LQCD (l_4 from F_{π}) / phenomenology $\bar{l}_4 = 4.12(56)$ (JLQCD/TWQCD, 2008; F_{π}), $\bar{l}_4 = 4.39(22)$ (Colangelo et al., 2001) $\bar{l}_1 - \bar{l}_2 = -4.67(60)$ (Colangelo et al., 2001),
- obtain estimate of $O(p^6)$ coupling
- studies for $N_f = 2+1$: on-going by JLQCD (JLQCD @ Lattice'10) small effect of strange sea quarks \Rightarrow SU(2) ChPT \Rightarrow similar results (?)
- studies w/ different lattice discretizations (?)

5. nucleon strange quark content

イロト イポト イヨト イヨト

990

5.1 intro.

nucleon strange quark content

scalar form factor at zero momentum transfer

$$\langle N|\bar{s}s|N
angle \Rightarrow f_{T_s} \equiv \frac{m_s \langle N|\bar{s}s|N
angle}{M_N}, \ y \equiv \frac{\langle N|\bar{s}s|N
angle}{\langle N|\bar{l}l|N
angle}$$

- phenomenologically important :
 - fundamental parameter on nucleon structure
 - experimental search for dark matter

 $m_s \langle N | \bar{s}s | N \rangle \;\; \Rightarrow \;\;$ scattering from nuclei through Higgs exchange

- \circ not directly accessible to exp't \Rightarrow lattice calculation \sim challenging
 - purely disconnected
 - VEV subtraction

cf. indirect method : Feynman-Hellmann theorem

$$\langle N|\bar{s}s|N\rangle = \frac{\partial M_N}{\partial m_s}$$

 \Leftrightarrow chiral fit to M_N around $m_{s, phys}$ only for scalar form factor

Sac

⇒ direct determination from disconnected 3-pt. function →

5.2 at simulated m_q

ratio method

 $R(\Delta t, \Delta t')$

$R(\Delta t, \Delta t')$ for $N_f = 2$

• clear signal for $R(\Delta t, \Delta t')$

 $= \frac{C_{3\text{pt}}(\Delta t, \Delta t')}{C_{2\text{pt}}(\Delta t + \Delta t')}$

 $\langle N|\bar{s}s|N\rangle \quad (\Delta t^{(\prime)} \to \infty)$

- $\bullet\,$ smeared nucleon source and sink $\,\,\Rightarrow\,\,$ suppress excited state contamination
- exact low-mode contribution : "scalar loop-VEV", nucleon piece
- constant fit to $R(\Delta t, \Delta t') \Rightarrow \langle N|\bar{s}s|N\rangle$ at simulated $m_{l,s}$

イロト イポト イヨト イヨト

5.2 at simulated m_q

 $R(\Delta t, \Delta t') = \frac{C_{3\text{pt}}(\Delta t, \Delta t')}{C_{2\text{pt}}(\Delta t + \Delta t')}$

 $R(\Delta t, \Delta t')$ for $N_f = 2 + 1$

- clear signal for $R(\Delta t, \Delta t')$
 - exact low-mode contribution : "scalar loop-VEV", nucleon piece
 - \circ smeared nucleon source and sink \Rightarrow suppress excited state contamination
- constant fit to $R(\Delta t, \Delta t) \Rightarrow \langle N|\bar{s}s|N\rangle$ at simulated $m_{l,s}$

 $\langle N|\bar{s}s|N\rangle \quad (\Delta t^{(\prime)} \to \infty)$

イロト イポト イヨト イヨト

5.3 chiral fit

$\langle N|\bar{s}s|N angle$ vs m_l

- mild dependence on m_{l,s}
- simple polynomial fit

$$\langle N|\bar{s}s|N\rangle = c_0 + d_{1,l} m_l + d_{1,s} m_s$$

$$\Rightarrow \chi^2 \sim 0.1 \text{ (iin.), } \chi^2 \sim 0.5 \text{ (const.)}$$
HBChPT fit w/ phenomenological *F*, *D*

- NLO + higher order anly. $\Rightarrow \chi^2 \sim 0.5$
- $\bullet\,$ bad convergence : LO $\sim-\rm NLO\lesssim$ higher

Э

Sac

 $\langle N|\bar{s}s|N\rangle_{\text{bare}} = 0.085(80)_{\text{stat.}}(128)_{\text{extrap.}}(30)_{\text{disc.}} \Rightarrow f_{T_s} = 0.013(12)(19)(5)$

۲

- other sys. err. : not large
 - finite volume : $M_{\pi}L \gtrsim 4 \Rightarrow$ not large
 - fixed Q : 1 % level for other MEs
- onvergence of HBChPT in baryon observables ?

5.4 renormalization

$$(\bar{s}s)_r = \frac{1}{3} \left\{ (\bar{q}q)_r - \sqrt{3}(\bar{q}\lambda_8 q)_r \right\} \\ = \frac{1}{3} \left\{ (Z_0 + 2Z_8)\bar{s}s + (Z_0 - Z_8)(\bar{u}u + \bar{d}d) \right\} \\ (\bar{q}\lambda_8 q)_r = Z_s 8\bar{q}\lambda_8 q \quad (\bar{q}q)_r = Z_0\bar{q}q, \\ \to Z_0 \bar{s}s ?$$

- exact chiral symmetry forbids mixing with *ud* quark operators
 axial WI ⇒ Z₈ = Z₀
- similar contamination also for indirect method (UKQCD, 2001)

$$\text{cf.} \quad \frac{\partial M_N}{\partial m_s} \; = \; Z_0 \left\{ \langle N | \bar{s}s | N \rangle + \frac{\partial \Delta m}{\partial m_{s,\text{sea}}} \langle N | \bar{u}u + \bar{d}d + \bar{s}s | N \rangle \right\}$$

イロト イポト イヨト イヨト 二日

5.5 comparison w/ recent studies

LQCD estimates of f_{T_s}

• SESAM/T χ L, UKQCD :

 \boldsymbol{y} is converted to f_{T_s} by using

• $\sigma_{\pi N} = 49 \text{ MeV}$ (Young-Thomas; JLQCD) • $m_s/m_l = 27.4$ (MILC, 2009)

UKQCD :

subtraction of mixing contamination

⇒ small content; w/ larger error

イロト イポト イヨト イヨト 二日

 \Leftrightarrow QCDSF (small a, L)?

(circle = direct; triangle = indirect)
(filled = sub.ed/chiral; open=not sub.ed)

• recent LQCD studies $\Rightarrow f_{T_s} \lesssim 0.10, y \lesssim 0.15$

• Lattice'10 : LHPC: $f_{T_8} = 0.026(8)$, RBC/UKQCD: 0.019(17)(2), BMW: 0.059(50)(29)

• smaller than phenomenology y = 0.3 - 0.6 $\sigma_{\pi N} = \hat{\sigma}/(1 - y), \quad \hat{\sigma} = \langle N | \bar{u}u + \bar{d}d - 2\bar{s}s | N \rangle$

6. summary

lattice studies of hadron physics involving disconnected quark loops

improved method

- conventional noise method \Rightarrow all-to-all propagator
 - applicable to arbitrary connected / disconnected diagrams (w/ sufficiently large N_e and N_r)
 - exact low-lying mode contribution \Rightarrow better accuracy
- pursuing further / other improvements
 - combined w/ hopping parameter expansion (Thron et al., 1997; Collins et al., 2007)
 - combined w/ Multigrid (Brower et al., Lat'10)
- studies of hadron observables
 - essential to flavor singlet-spectrum / MEs, sea quark content of hadrons, ...
 - not necessarily negligible : significant in a few % determination of $F_S(q^2)$

to be applied for

- other observables : pion strange form factor $\Rightarrow L_4$
- precise determinations of spectrum / MEs

イロト イポト イヨト イヨト