

Hadron Production at CMS in pp Collisions at $\sqrt{s} = 0.9$, 2.4 and 7.0 TeV

KEITH ULMER UNIVERSITY OF COLORADO

ICHEP 2010 Paris, France

July 22nd, 2010

Motivation

Most LHC collisions are <u>not</u> hard interactions

- Majority of particles produced with low transverse momentum
- Particle production not always reliably calculable in QCD
- Soft hadron production is modeled phenomenologically
 - Experimental input is crucial for theoretical models
 - LHC opens up a new energy regime to test old models and develop new ones
- Must understand QCD processes well
 - Dominant backgrounds for many new physics searches
 - Provide reference for heavy ion results

The CMS detector

7/22/10

The CMS tracker

Outline of physics results

- Charged hadron production rate vs η and p_T and (p_T)
 - Image: JHEP 02:041, 2010 (at √s = 0.9 and 2.36 TeV)
 - <u>PRL 105:022002, 2010</u> (at $\sqrt{s} = 7.0$ TeV)
- □ Charged hadron multiplicity at √s = 0.9, 2.36, and 7.0 TeV
 - CMS-PAS-QCD-10-004 <u>http://cdsweb.cern.ch/record/1279343?</u> <u>ln=en</u>
- Strange particle production rates vs y and p_T and $\langle p_T \rangle$ at $\sqrt{s} = 0.9$ and 7.0 TeV

Keith Ulmer University of Colorado

CMS-PAS-QCD-10-007 <u>http://cdsweb.cern.ch/record/1279344?</u> <u>ln=en</u>

7/22/10

Trigger and event selection

- Results presented are normalized to non-single-diffractive events (NSD)
 - Trigger on signal in scintillation counters consistent with pp collision from coincident beams
 - Select events with

7/22/10

- Forward calorimeter cluster with $E \ge 3$ GeV on both sides (2.9< $|\eta|$ <5.2)
- Reconstructed primary vertex
- Reject beam halo and beam background events
- Correct for trigger inefficiencies and
 SD contributions from MC simulation

3 methods for finding charged tracks

- Consistency of 3 different methods ensures robustness of results
 - Counting barrel pixel clusters
 - Efficient for $p_T \ge 30 \text{ MeV/c}$
 - Insensitive to misalignment
 - Count 2-hit barrel pixel tracklets
 - Efficient for $p_T \ge 50 \text{ MeV/c}$
 - Less sensitive to beam backgrounds
 - Full tracking (pixels + strips)
 - Efficient for $p_T \ge 100 \text{ MeV/c}$
 - Also provides p_T measurement

Results: charged hadron $dN/d\eta$

- Shapes similar at different energies
- Good agreement with other measurements
- \square Bands show systematic error (~5%)
 - Largest contribution from correction to NSD event selection

- Multiplicity at $\eta \approx 0$ rises with \sqrt{s} (as expected)
- Rate of rise at 7 TeV exceeds most predictions

Results: charged hadron p_T

- Transverse momentum spectra and (p_T) measured for |η| < 2.4
 Fit with Tsallis function: exponential at low p_T and power law tail
- Spectra grow in transverse momentum with higher \sqrt{s}
- Models bracket the observed increase

7/22/10

Keith Ulmer University of Colorado

Measuring charged hadron multiplicity

- Full tracking used to measure primary charged hadron multiplicity
- Use MC to correct for efficiency to select NSD events with a good primary vertex
- Obtain true multiplicity distribution from measured distribution with a Bayesian unfolding method
 - Corrects for track reconstruction efficiency, acceptance and tracks from secondary particles

Results: charged hadron multiplicity

- □ KNO scaling: $\Psi(z) = \langle n \rangle P_n$ shown to be independent of \sqrt{s} for scale invariant particle production
 - \blacksquare True for $|\eta| < 0.5,$ violated for $|\eta| < 2.4$
- □ Large tail at high n also reflected in steep rise in (n) with √s

Multiplicity Data-MC comparison

- Different models for simulation have varying degrees of success—no model gets everything right at 7 TeV
- Pythia 8 models total multiplicity well, but predicts too many high p_T particles at large multiplicities

Strange particle reconstruction

- K_S⁰ and Λ (+ c.c.) reconstructed in decays to π⁻π⁺ and π⁻p
- \Box Ξ^{-} (+ c.c.) reconstructed in decays to $\Lambda \pi^{-}$
- Long-lived particles identified by displaced vertices (cτ = 2.7-7.9 cm)
- □ All results shown for |y| < 2.0

Validate understanding of reconstruction efficiency by finding correct lifetime in data

CMS Experiment at the LHC, CERN Run/Event: 123596 / 12886346 Candidate K0 Event

7/22/10

Results: strange particle dN/dp_T

 □ Fit for yields and correct for efficiency in bins of p_T
 ■ Reweight MC to account for discrepancy in K⁰_S / Λ / Ξ⁻ kinematic distributions between data and MC

Results: strange particle dN/dy

Results vs rapidity compared to Pythia predictions

□ Factor of 3 for Ξ^- at $\sqrt{s} = 7$ TeV!

7/22/10

Conclusions

CMS is operating well, and taking full advantage of the luminosity delivered by the LHC

Proton collisions at $\sqrt{s} = 7$ TeV represent a large jump in energy with lots of new terrain to explore

Hadron production studies have already provided surprises

- Charged hadron multiplicity distribution scaling law is violated
- Strange particle production is greatly enhanced compared to Pythia predictions
- We're deepening our understanding of QCD in a new energy regime, and providing the foundation for more surprises yet to come...

Extra slides

Cluster counting method

- Cluster length should be a function of pitch and track angle
 - Reject too-short clusters inconsistent with originating at the primary (loopers, secondaries etc.)
- Correct measured rates for remaining non-primary tracks
- Independent results obtained
 for all three pixel barrel
 layers

Keith Ulmer University of Colorado

7/22/10

18/16

Tracklet method

- Use all three independent combinations of pixel barrel layer pairs
- Compute $\Delta \eta$ and $\Delta \varphi$ for each pair
 - η and φ defined at the angles
 between the primary vertex and
 one of the tracklet hits
 - Δη and Δφ are the differences in η and φ between the two tracklet hits
- Use sidebands in Δφ to subtract combinatorial backgrounds
- Correct for efficiency, weak decays, and secondaries with MC

7/22/10

Tracking method

- Use iterative step approach to track building
- Require compatibility with beam spot and primary vertex
 - Sensitive to beamspot position and alignment
- Track cleaning based on cluster shape helps keep fake rate low
- Good agreement between data and
 MC in number of hits on track

Comparison of $dN/d\eta$ results

Three methods produce consistent results

Average used a final CMS result

7/22/10

Keith Ulmer University of Colorado

21/16

Tsallis function

Tsallis function:

$$(1/N)dN/dp_{T} = Cp_{T} \left[1 + \frac{\sqrt{p_{T}^{2} + m^{2}} - m}{nT} \right]^{-n}$$

- m = particle mass, n and T are shape parameters and
 C is a normalization parameter
- C. Tsallis, "Possible generalization of Boltzmann-Gibbs statistics", J. Stat. Phys. 52 (1988) 479. doi:10.1007/BF01016429.

Track multiplicity unfolding

- Corrections are a significant effect
- Uncertainties obtained from full covariance matrix calculated with a resampling technique

Keith Ulmer University of Colorado

Moments of track multiplicity

- Normalized moments of charged hadron multiplicity
 - **\square** Flat distributions for $|\eta| < 0.5$, as predicted by GNO scaling
 - \blacksquare Rising distributions for $|\eta| < 2.4$ in violation of GNO scaling

7/22/10

Keith Ulmer University of Colorado

$\langle p_T \rangle$ with predictions

- PYTHIA (p_T) rises too fast for events with many tracks
- Modeled better by PHOJET

25/16

Strange particle mass plots

Strange particle efficiencies

- \square Reconstruction efficiency of K_S^0 , Λ and Ξ^-
 - Including branching fractions, trigger, acceptance, and reconstruction efficiencies

Strange particle $\langle p_T \rangle$ scaling

 $\Box \langle p_T \rangle$ as a function of \sqrt{s} for K_S^0 , Λ and Ξ^- compared to charged hadrons

7/22/10

Keith Ulmer University of Colorado

28/16