# New Mechanism for Neutrino Mass Generation and triply charged Higgs boson at the LHC

#### S. Nandi

Oklahoma State University and Oklahoma Center for High Energy Physics

(in collaboration with K. S. Babu and Z. Tavartkiladze) arXiv: 0905.2710[hep-ph](Phys. ReV. D80:071702, 2009)

Talk presented at the 35th International Conference on High Energy Physics, ICHEP 2010, Paris, July 22-28, 2010



## Goals

• To provide a new mechanism for light neutrino mass generation with new mass scale at the TeV.

- To connect the neutrino physics with the physics that can be explored at the LHC, even possibly at the Tevatron.
- Explore new signals for Higgs bosons

## Outline of Talk

- Introduction
- Model and the Formalism
- Phenomenological Implications
- Conclusions and Outlook

## Introduction

• The existence of neutrino masses are now firmly established.  $m_{\nu}\sim 10^{-2}~{\rm eV}\Rightarrow 1{\rm st}$  and only indication for physics beyond the SM

- ullet  $m_{
  u}$  is about a billion times smaller the quark and charged lepton masses
- What is the mechanism for such a tiny neutrino mass generation?

## Introduction

• Most popular mechanism : see-saw,  $m_{\nu} \sim \frac{m_D^2}{M}$  $\Rightarrow$  dimension 5 operator:  $L_{eff} = \frac{f}{M} IIHH$ 

The observed neutrino mass,  $m_{\nu} \sim 10^{-2}$  eV.

- If  $M=M_{PL}$ , then  $m_{\nu}$  is too small
- If  $M=M_{GUT}$ , then  $m_{\nu}$  is still too small
- $M \sim 10^{14}$  GeV is needed  $\rightarrow$  A new symmetry breaking scale ( $N_R$ )
- This scale is too high → No connection can be made to the physics to be explored at the LHC or Tevatron
   ⇒ need M ~ TeV.



## Introduction

- It is possible the dim. 5 operator does not contribute to neutrino masses in a significant way.
  - $\Rightarrow$  next operator (dim. 7) :  $L_{eff.} = \frac{f}{M^3} IIHH(H^{\dagger}H)$
- This by itself is not enough to make  $M \sim$  TeV, need  $f \sim 10^{-9}$ .
- We propose a model in which  $f \sim y_1 y_2 \lambda_4$  with each  $\sim 10^{-3}$  (domain of natural values)
- This gives  $M \sim \text{TeV}$  scale to obtain neutrino masses in the range  $10^{-2}-10^{-1}$  eV.
  - ⇒ connect to physics at the LHC and Tevatron.



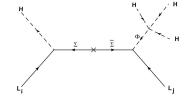
- Gauge Symmetry :  $SM = SU(3)_c \times SU(2)_L \times U(1)_Y$
- Usual SM model fermions, + a pair of vector-like  $SU(2)_L$  triplet leptons transforming as (1,3,2) and (1,3,-2),  $\Sigma + \bar{\Sigma}$ ,  $\Sigma = (\Sigma^{++}, \Sigma^+, \Sigma^0)$ , + a new isospin  $\frac{3}{2}$  Higgs,  $\Phi$ ,  $\Phi = (\Phi^{+++}, \Phi^{++}, \Phi^+, \Phi^0)$
- Φ has positive mass square, but acquires a tiny VEV through Higgs potential via interaction with H.
- ullet  $\Sigma$  has interactions with SM lepton doublets, H as well as  $\Phi$ .

Higgs Potential

$$V = -\mu_H^2 H^{\dagger} H + M_{\Phi}^2 \Phi^{\dagger} \Phi$$
$$+ \lambda (H^{\dagger} H)^2 + \lambda_1 (\Phi^{\dagger} \Phi)^2$$
$$+ \lambda_2 (H^{\dagger} H) (\Phi^{\dagger} \Phi)$$
$$+ \lambda_3 (H^{\dagger} \frac{t_a}{2} H) (\Phi^{\dagger} \frac{T_A}{2} \Phi)$$
$$+ \lambda_4 (HHH\Phi + \Phi^{\dagger} H^{\dagger} H^{\dagger} H^{\dagger})$$

• Minimization of  $V\Rightarrow \langle \Phi_0 \rangle \equiv v_\Phi \sim -\lambda_4 rac{v_H^3}{M_\Phi^2}$ 




## Light neutrino mass generation:

- $L = y_i l_i H^* \Sigma + \bar{y}_i l_i \Phi \bar{\Sigma} + M_{\Sigma} \Sigma \bar{\Sigma}$  $y_i, \bar{y}_i \Rightarrow$  dimensionless Yukawa couplings.
- $\rightarrow L_{eff} = \frac{(y_i \bar{y}_j + y_j \bar{y}_i)}{M_{\Sigma}} I_i I_j H^* \Phi + h.c.$

with 
$$v_{\Phi}=-\lambda_4 rac{v_H^3}{M_{\Phi}^2}$$

with 
$$(y_1, y_2, \lambda_4) \sim 10^{-3}$$
,

 $\Rightarrow$  This is the dimension 7 neutrino mass generation mechanism with  $\Phi$  replaced by  $HHH/M_{\Phi}^{2}$ .



•  $m_{\nu} \sim 10^{-2} - 10^{-1}$  eV range with  $M_{\Sigma}$  and  $M_{\Phi}$  at the TeV scale.



Mass Spectrum of Φ

respectively.

$$M_{\Phi_i}^2 = M_{\Phi}^2 + \lambda_2 v_H^2 - \frac{1}{2} \lambda_3 I_{3i} v^2,$$
 where  $I_{3i} = (3/2, 1/2, -1/2, -3/2)$  for  $(\Phi^{+++}, \Phi^{++}, \Phi^{+}, \Phi^{0})$ 

- Two possible hierarchies for the spectrum of  $\Phi$ Positive  $\lambda_3: M_{\Phi^{+++}} < M_{\Phi^{++}} < M_{\Phi^+} < M_{\Phi^o}$ Negative  $\lambda_3: M_{\Phi^{+++}} > M_{\Phi^{++}} > M_{\Phi^+} > M_{\Phi^o}$ .
- Note that the mass square difference,  $\Delta M^2$  among consecutive components are the same, and is equal to  $(1/2)\lambda_3 v_H^2$ .



#### Model& and the Formalism

## Relevant parameters in our model and existing constraints:

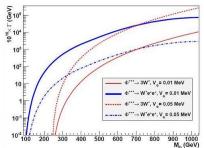
- Parameters :  $v_{\Phi}$ ,  $\Delta M$ ,  $M_{\Phi}$ ,  $M_{\Sigma}$  (  $\Delta M = \text{mass splitting}$ )
- $v_{\Phi}$ :  $\Phi$  has isospin 3/2, contribute to  $\rho$  parameter at the the tree level.  $\rho=1-(6v_{\Phi}^2/v_H^2)$ . Experiment:  $\rho=1.0000^{+0.0011}_{-0.0007}$ , At  $3\sigma$  level  $v_{\Phi}<2.5$  GeV.
- The mass splittings between the components of  $\Phi$  induces an additional positive contribution to  $\rho$  at one loop level,  $\Delta \rho \simeq (5\alpha_2)/(6\pi)(\Delta M/m_W)^2. \Rightarrow \Delta M < 38 \text{ GeV}.$
- There is also a theoretical lower limit on  $\Delta M$  arising from the radiative correction at the one loop  $\Rightarrow \Delta M \geq 1.4 \, GeV$  for  $M_{\Phi} \sim 1 \, \text{TeV}$  (This is actually a naturalness lower limit, since these corrections are not finite, with the infinity absorbed in the renormalization of  $\lambda_4$ .)

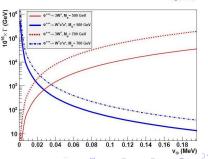
## Model& and the Formalism

#### **Experimental constraints**

- Mass of  $\Phi$ : LEP2: > 100 GeV for charged  $\Phi$ ,
- CDF and D0 Collaborations have looked for stable CHAMPS (charged massive particle).
- Using CDF cross sections times branching ratio limits, we obltain
  - > 120 GeV for stable, charged  $\Phi^{+++}$

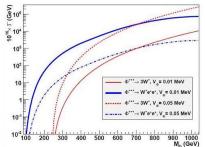
- Decays of Φ's in the model
- Production
- Signals
- Other implications
- Two possible scenarios:  $\Phi^{+++}$  lightest or  $\Phi^{+++}$  heaviest. Consider the case in which  $\Phi^{+++}$  lightest
  - $\Rightarrow$  phenomenological implications most distinctive with displaced vertices.

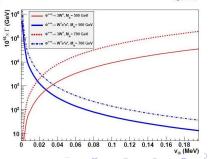

## A. Decays


Two possible decay modes

$$\Phi^{+++} \rightarrow W^+W^+W^+$$

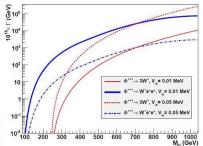
$$\Phi^{+++} \rightarrow W^+I^+I^+$$

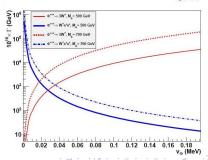

- $W^+W^+W^+$  mode dominate for higher values of  $v_{\Phi}$
- $W^+I^+I^+$  dominate for smaller values of  $v_{\Phi}$






#### A. Decays

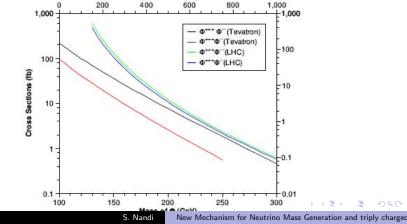

- Crossing point:  $v_{\Phi} \sim 0.02 - 0.03 \text{ MeV}.$
- For  $v_{\Phi} \sim 0.02 0.03$  MeV, for  $M_{\Phi} = 500$  GeV,  $\Gamma < 10^{-12} - 6 \times 10^{-14} \text{ GeV}$ ⇒ Displaced Vertices.
- For lower masses, widths are even smaller  $\rightarrow \Phi^{+++}$  can escape the detector !!
- For  $v_{\Phi} > 0.2$  MeV,  $\Phi^{+++}$ will immediately decay to  $W^{+}W^{+}W^{+}$






#### Test of the model

- for  $v_{\Phi} > 0.05$  MeV,  $\Phi^{+++} \rightarrow W^+W^+W^+$
- For  $v_{\Phi} \sim 0.01 0.06$  MeV,  $\Phi^{+++} \rightarrow W^+W^+W^+$ , or  $\Phi^{+++} \rightarrow W^+I^+I^+$  with displaced vertices
- For  $v_{\Phi} < 0.01$  MeV,  $\Phi^{+++} \rightarrow W^{+}I^{+}I^{+}$  with no displaced vertices








#### **B.** Productions

• pp or  $p\bar{p} \to \Phi^{+++}\Phi^{---} \to 6W$  or  $4WI^+I^+$ ,  $4WI^-I^-$  or  $2WI^+I^+I^-I^-$  with or wthout displaced vertices depending on  $v_{\Phi}$ .



- With displaced vertices, only few events are needed.
- LHC Reach (with displaced vertices) with 1 inverse fb,  $\sim$  400 GeV with 10 inverse fb,  $\sim$  650 GeV with 100 inverse fb,  $\sim$  1 TeV
- LHC Reach (without displaced vertices) with 1 inverse fb,  $\sim 250~{\rm GeV}$  with 10 inverse fb,  $\sim 400~{\rm GeV}$  with 100 inverse fb,  $\sim 800~{\rm GeV}$

#### C. Other Implications

 Φ multiplet with tiny VEV essentially behaves like an innert Higgs

 $\Rightarrow$  SM Higgs mass can be raised to  $\sim$  400 - 500 GeV if  $v_{\Phi}$  is large  $\sim$  few - 38 GeV. In that case,  $H \to \Phi^{+++}\Phi^{---}$ 

• Neutrino mass hierarchy If mass of  $\Phi^{+++} < 3W$ , then  $\Phi^{+++} \to W^+ I^+ I^+$  dominate  $\Rightarrow ee, e\mu, \mu\mu$ , along with  $\tau$ 's. Dominance of  $\mu\mu \to \text{Normal Hierarchy}$  Dominance of  $e\mu$  (ee)  $\Rightarrow$  Inverted Hierarchy

## Conclusions

- Presented a new mechanism for the generation of neutrino masses
- via dimension 7 operators:  $\frac{1}{M^3} ||HH(H^{\dagger}H)|$
- ullet Leads to new formula for the light neutrino masses :  $m_
  u \sim rac{v^4}{M^3}$
- ullet This is distinct from the usual see-saw formulae :  $m_
  u \sim rac{v^2}{M}$
- Scale of new physics can be naturally at the TeV scale



# Conclusions (continued)

- Microscopic theory that generated d=7 operator has an isospin 3/2 Higgs multiplet  $\Phi$  containing triply charged Higgs boson with mass around  $\sim$  TeV or less.
- Can be produced at the LHC (and possibly at the Tevatron)
- Distinctive multi-W and multi-lepton final states
- Can be long-lived with the possibility of displaced vertices, or even escaping the detector
- Leptonic decay modes carry information about the nature of neutrino mass hierarchy