

a Mini-Review

Giampiero PASSARINO

Dipartimento di Fisica Teorica, Università di Torino, Italy INFN, Sezione di Torino, Italy HEPTOOLS Network Higgs XS WG

ICHEP 2010 Paris

Thanks: All Members, in particular

A. Denner, S. Dittmaier, S. Farrington, M. Felcini, M. Grazzini, F. Maltoni, C. Mariotti, F. Petriello, M. Spira, R. Tanaka

<u>ggF</u>: Djouadi et al, Harlander, Catani, De Florian, Grazzini, Anastasiou, Melnikov, Nason, Moch, Aglietti et al, Actis et al, Petriello, Boughezal VBF: Spira, Zeppenfeld, Denner, Dittmaier, Mück, Bolzoni, Maltoni, Moch

ttH: Beenakker, Dawson, Bevilaqua et al, Bredenstein et al, Dittmaier, Krämer, Zerwas, Reina, Wackeroth

VH: Djouadi, Harlander, Dittmaier, Ciccolini et al, Spira, Han, Willenbrock, Krämer, Denner

Outlines	

Outlines	Framework	Data & Theory	TH uncertanties	Results	A new language?	Conclusions
Outli	nes					

Outlines	Framework	Data & Theory	TH uncertanties	Results	A new language?	Conclusions
Outli	nes					

(1, <mark>2</mark>,)

- From Tevatron to LHC
- 2 Higgs production and decay,

what else, but the inevitable!

LHC Higgs Cross Section Working Group

MC Group MC4LHC Kickoff meeting on February 3, 2010. Preparatory workshop in Torino Nov. 23-24, 2009 Inauguration workshop in Freiburg April 12-13, 2010

> Task: SM and MSSM Higgs Cross Section and BRs Compute and agree on cross sections and Brs Use the same Standard Model input parameters Strategy on uncertainties (scale, a_s, PDF, etc.) Monte Carlo at NLO for the signal Define pseudo-observables Cross sections of background SM processes

SM Cross Section Task Force

Beyond SM and MSSM? Other SUSY scenario NMMSM, Invisible Higgs, Higgsless, etc.

Statistics Forum

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ◆ ○ ◆

Conclusions

R. Tanaka

R. Tanaka

(日)

3

LHC Status

http://lpc.web.cern.ch/lpc/ $=1 \text{ fb}^{-1}$ Goal 2010/07/02 11:20 LHC 2010 RUN (3.5 TeV/beam) by the end of 2011 delivered integrated luminosity (nb⁻¹) New record last week 50 PRELIMINARY ($\pm 10\%$ scale) with 7x7 bunches - O- ATLAS / LHCf Peak lumi. L~1030 cm-2 s-1 ----- ALICE 2010 goal: L=10³² cm⁻² s⁻¹ 30 CMS / TOTEM ··· LHCb (800 bunches, ' =3.5m) 20 - Brinning 10 1000 1050 1100 1150 fill number >50nb⁻¹ delivered LHC luminosity. " Each ATLAS/CMS should have observed ~1 event of 120 GeV/c ² Higgs (H"bb)

(_{SM}(ggF+qqH+VH+ttH)=13.6 pb @ 7 TeV

13

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

Example: SM Higgs Expectations @ 7 TeV & 1 fb⁻¹

Expected Higgs mass range to be excluded (1 experiment): 145

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

^{7/5/2010-}LHC Higgs Workshop

SM Higgs Search Tools

<i>М_н</i> [GeV]	Prod.	Decay	Back.
114 – 150	ggH	$H ightarrow \gamma \gamma$	QCD
114 – 150	qqH	H ightarrow au au	Z, tt, W+ jets
140 – 200	ggH, qqH	$H \rightarrow WW$	<i>WW</i> , <i>ZZ</i> , <i>tt</i>
114 – 700 ?	ggH	$H \rightarrow ZZ$	ZZ, Zbb, Ztt

Example

When Theory helps

Control - Region

- some observable, background and signal;
- invert cuts: from s enhancement to b enhancement;
- use data to normalize b;
- use theory to compute change in **b** when inverting cuts.

Systematic Uncertainties

Theory driven

related to **s** & **b** TH predictions

 Total XS → event yield normalization;

 Differential XS → shape of discriminating quantities.

Exp driven

 ... but they are uncorrelated to the TD ones.

To quantify **TDU**

- TH error range;
- base-line selection cuts

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ◆ ○ ◆

are needed

Unprecedented precision

This area will become important as next step for exclusive calculations:

 differential distribution for Higgs signal, for example Higgs p_T

comparison between LO PS MC and NLO MC, how to normalize to NNLO ?

SM background processes I

Important:

study theoretically the SM backgrounds for Higgs search, such as W/Z +jets, WW^*/ZZ^* , Wbb/Zbb, *tt*, *ttbb* etc.

 Background estimation via "data-driven methods": rely on theory to relate XS in different kinematic regions
 reliability of result needs theoretical input

Proposal:

study theoretical errors of SM backgrounds to Higgs search with common ATLAS and CMS cuts.

• Related issue:

interference between Higgs signal and backgrounds

SM background processes II

Examples:

- $WW^{(*)} \rightarrow I\nu I\nu$: background $qq/gg \rightarrow WW$ from data ?
- 2 $ZZ^{(*)} \rightarrow 4I$: background $qq/gg \rightarrow ZZ$ from data ?
- SVBF: central jet-veto, effect of UE, QCD background

Questions:

- Shall we study theoretically these SM background processes? How accurate should they be predicted?
- Shall we study the theoretical error for background estimation via "data-driven method"?
- Shall we study $\gamma\gamma$, $WW^{(*)}$, and $ZZ^{(*)}$ with priority?
- Interferences between Higgs signal and backgrounds?

The importance of being NⁿLO

Loops & Legs

Recent years have seen an impressive amount of new results at $N^{n}LO$

NLO

 is the first order where reliable predictions can be obtained

NNLO

 is the first order at which a reliable estimate of the error can be given

Usually, (fully) inclusive, but EXPs have finite acceptances!

Why? Example: ggF Different differential calculations

$\sigma_{\rm acc}$ [fb]	$\mu =$	- m11	$\mu = 2 m_{\rm H}$		
jet algorithm	SISCone	k _T	SISCone	k_{T}	
LO	21.00	± 0.02	14.53	± 0.01	
HERWIG	11.16 ± 0.04	11.59 ± 0.04	7.60 ± 0.03	7.89 ± 0.03	
NLO	22.40	± 0.06	19.52	± 0.05	
MC@NLO	17.42 ± 0.08	18.42 ± 0.08	13.60 ± 0.06	14.39 ± 0.06	
R ^{NLO} (HERWIG)	19.79 ± 0.07	20.56 ± 0.07	14.61 ± 0.05	15.17 ± 0.05	
NNLO	18.18 ± 0.43	18.45 ± 0.54	18.76 ± 0.31	19.01 ± 0.27	
R ^{NNLO} (MC@NLO)	19.33 ± 0.09	20.43 ± 0.09	17.24 ± 0.07	18.24 ± 0.07	
$R^{\text{NNLO}}(\text{HERWIG})$	22.02 ± 0.08	22.88 ± 0.08	18.65 ± 0.07	19.38 ± 0.07	

Table 1: Cross-sections after the signal cuts of Ref. [33] are applied for different encollation methods. The statistical integration errors are shown expicitly. The MC@NLO and HERWIG crosssections are evaluated with 1,000,000 generated events. The fixed-order results were computed in Ref. [33] and require the Monte-Carlo integration of multiple sectors [17].

•

Good agreement between NNLO differential codes and MC@NLO, HERWIG rescaled to correct inclusive result

[see Petriello's tak toda

PDF4LHC Recipe

- In February, we have asked PDF4LHC working group the recommendation on PDFs and in alphas values (and their uncertainties).
- PDF4LHC group decided to study LHC benchmark processes: W[±], Z⁰, tt̄, gg → H (M_H = 120, 180, 240 GeV)
- PDF4LHC Recipe (June 2010)
 - Use global fit PDF sets: MSTW, CTEQ and NNPDF
 - HERAPDF, ABKM and (G)JR are optional but recommend to check.
 - Take midpoint for central value
 - alphas =±0.0012 for 68% C.L. and ±0.0020 for 90% C.L.
 - Envelope method for errors
 - Use NLO PDF error estimation via envelope method for NNLO

PDF4LHC http://www.hep.ucl.ac.uk/pdf4lhc/

8

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ◆ ○ ◆

Bands including pdf + as uncertainty (normalized to MSTW2

▲□▶▲□▶▲□▶▲□▶ □ ● ●

TH errors

• For signal XS:

- parametric errors and their propagation
- EW corr, renormalization scheme
- QCD ⊗/⊕ EW corr (factorized or added) ?
- QCD scales (ren: μ_R, fact: μ_F) define central value and range and scan strategy
- PDF uncertainties
- Background treatment:
 - $LO \times K$ factor or NLO, interference with signal, etc. ?
- Possible approximations ?

Note: TH errors are 100% correlated between the two exp. (if using the same programs!)

The μ_R problem

QED

- Is there a μ_R in QED?
 Yes
- Is it a problem? No, $q^2 = 0$ is physical!

EW

- Is there a μ_R in EW? Yes
- Is it a problem? No!
- Are there large logs?
 Yes
- Use G_F scheme and not α(0), i.e. resum

QCD one(multi)-scale? Once again, **resum** or, at least **minimize**!

Example

4

・ロト ・御 ト ・ ヨト ・ ヨト ・ ヨー

The scale variation problem

Warning TH uncertainty (\equiv stupidity) has No statistical meaning

ggF

- Fixed order → scale = M_H/2
- Fully justified by NNL re-summation!

Multi - scale

- $\mu = dynamical scale,$
- $\mu_{\min} \leq \mu \leq \mu_{\max}$,
- are selected to (reasonably) minimize large logs

Example

 $M_{\rm H}/2(3) \le \mu \le 2(3) M_{\rm H}$ is Not 68%(90%) C.L.

What is the 'right' scale choice?

Scale uncertainties computed with independent variations of renormalization and factorization scales around some default scale μ_D (with 0.5 $\mu_D < \mu_F$, $\mu_R < 2 \mu_D$ and 0.5 $< \mu_F/\mu_R < 2$). What's the 'right' default scale μ_{D2}

Recent NLO study shows that luminosity needed for discovery may be a factor 6-7 larger E.Berger et al. (2010) Petriello, Grazzini, Stoeckli

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

H→yy cuts

- H->yy opt -H->ZZ->4 H-WW->212

300

400 500 600 M_H,GeV/c²

VBF Process

Vector boson fusion

Second to gg fusion in LHC Higgs production

Important in low mass region

Distinctive signature

s-channel shares same initial and final states : interference Some of the calculations include this effect Typical analysis cuts minimse this contribution

2

Sinead Farringtor University of Oxford

p.d.f. Percentage errors

Sinead Farringtor University of Oxford

HAWK Results

Effect of EW corrections at NLO

~5% decrease in cross section for low masses

◆ロ▶ ◆母▶ ◆臣▶ ◆臣▶ 三臣 めんの

HAWK Results

Effect of EW corrections at NLO and s-channel

◆ロ > ◆母 > ◆臣 > ◆臣 > 「臣 」のへで

16

Cross section for VBF at LHC

- QCD corrections at second order small
- NNLO results very stable at 2% against QCD scales variation (uniformly over the full mass range)

Upshot

- apparent convergence
- scale stability
- reduction of theoretical uncertainty
- PDF + α_s uncertainty generally small (improved at NNLO) $\Delta \sigma_{NLO} \gg \Delta \sigma_{NNLO}$

Higgs production via vector-boson fusion at NNLO in QCD - p.9

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ◆ ○ ◆

• LO programs: HQQ (S.) Madgraph/Madevent (Maltoni, Stelzer,...) MCFM (Campbell, Ellis), ...

M. Spira

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ◆ ○ ◆

Beenakker,... Dawson,...

- $pp \rightarrow t\bar{t}H \rightarrow t\bar{t}b\bar{b}$ (NWA) \Rightarrow no public NLO-code so far...
- $pp \rightarrow t \overline{t} b \overline{b}$ (background)

Bevilacqua,...

Bredenstein,... Bevilacqua,...

M. Spira

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ < つへの

Beenakker, Dittmaier, Krämer, Plümper, S., Zerwas Dawson, Orr, Reina, Wackeroth

M. Spira

| ◆ □ ▶ ★ □ ▶ ★ □ ▶ ★ □ ▶ ↓ □ ● ○ ○ ○ ○

Outlines	Framework	Data & Theory	TH uncertanties	Results	A new language?	Conclusions

◆□ > ◆□ > ◆ 三 > ◆ 三 → ○ < ⊙ < ⊙

Cross-Sections & Branching Ratios

Won't discuss further, the whole workshop is about it

10

3

< □ > < 同 > < 回 > < 回 >

$$= 0.01 - 0.78$$
 (secare) -0.28 (1 D1 + 4

Perfectly consistent

Glossary for POs

Example

- RD = real data
- RO = from real data \rightarrow distributions with cuts \equiv RO
 - diphoton pairs $(E, p) \rightarrow M(\gamma \gamma)$;
- **PO** = transform the *universal intuition* of a QFT-non-existing quantity into an *archetype*, e.g. $\sigma(gg \rightarrow H), \Gamma(H \rightarrow \gamma\gamma),$
 - $\text{RO}_{\text{th}}(m_H, \Gamma(H \to \gamma \gamma), ...)$ fitted to RO_{exp} (e.g. $\text{RO} = M(\gamma \gamma)$) defines and extracts m_H etc.

LHC example of POs

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ◆ ○ ◆

Figure: Gauge-invariant breakdown of the triply-resonant $gg \rightarrow 4f$ signal into $gg \rightarrow H$ production, $H \rightarrow W^+W^-$ decay and subsequent $W \rightarrow \bar{f}f$ decays.

Strategy for POs

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

NⁿLO corrections are important

- QCD up to NNLO for ggF
- refinements are available: resummation, EW effects
- $\bullet \rightsquigarrow$ support that TH is well under control

Fully exclusive NLO (or higher) programs exist that allow us to compute corrections in the presence of cuts, \rightsquigarrow use them!

We need a consistent PO definition of mass, width, couplings of the Higgs to publish results in such a way that theorists can later enter their general model parameters and see how well data constrain this model

NⁿLO corrections are important

- QCD up to NNLO for ggF
- refinements are available: resummation, EW effects
- $\bullet \rightsquigarrow$ support that TH is well under control

Fully exclusive NLO (or higher) programs exist that allow us to compute corrections in the presence of cuts, \rightsquigarrow use them!

We need a consistent PO definition of mass, width, couplings of the Higgs to publish results in such a way that theorists can later enter their general model parameters and see how well data constrain this model

NⁿLO corrections are important

- QCD up to NNLO for ggF
- refinements are available: resummation, EW effects
- $\bullet \rightsquigarrow$ support that TH is well under control

Fully exclusive NLO (or higher) programs exist that allow us to compute corrections in the presence of cuts, \rightsquigarrow use them!

We need a consistent PO definition of mass, width, couplings of the Higgs to publish results in such a way that theorists can later enter their general model parameters and see how well data constrain this model