Top quark pair and single top production at Tevatron and LHC energies

Nikolaos Kidonakis

(Kennesaw State University)

- $t\bar{t}$ and single top production channels
- Higher-order two-loop corrections
- $t\bar{t}$ cross section at Tevatron and LHC
- Top quark p_T distribution at Tevatron and LHC
- *s*-channel production at Tevatron and LHC
- Associated production of a top with a W^- or H^-

Partonic processes at LO

Top-antitop pair production

• $q\bar{q} \rightarrow t\bar{t}$

dominant at Tevatron

• $gg \rightarrow t\bar{t}$

dominant at LHC

Single top quark production

• *t* channel: $qb \rightarrow q't$ and $\bar{q}b \rightarrow \bar{q}'t$

dominant at Tevatron and LHC

• s channel: $q\bar{q}' \rightarrow \bar{b}t$

small at Tevatron and LHC

• associated tW production: $bg \rightarrow tW^-$

very small at Tevatron, significant at LHC

Related process: $bg \rightarrow tH^-$

Higher-order corrections

- QCD corrections significant for top pair and single top quark production
- NLO corrections fully known
- Soft-gluon corrections from incomplete cancellations of infrared divergences between virtual diagrams and real diagrams with soft (low-energy) gluons

Soft corrections $\left[\frac{\ln^k(s_4/m^2)}{s_4}\right]_+$ with $k \le 2n-1$ and s_4 distance from threshold

Soft-gluon corrections are dominant near threshold Resum (exponentiate) these soft corrections

At NLL accuracy requires one-loop calculations in the eikonal approximation New results at NNLL-two-loop calculations completed Approximate NNLO cross section from expansion of resummed cross section Essential ingredient: two-loop soft anomalous dimension N. Kidonakis, Phys. Rev. Lett. 102, 232003 (2009), arXiv:0903.2561 [hep-ph]

This allows NNLL resummation

$t\bar{t}$ cross section at Tevatron and LHC

Top quark p_T distribution at Tevatron and LHC

Single top quark production - *s* **channel**

Two-loop eikonal diagrams

s-channel single top cross section at Tevatron

 $\sigma_{s-\text{channel}}^{\text{NNLOapprox, top}}(m_t = 173 \,\text{GeV}) = 0.523^{+0.001+0.030}_{-0.005-0.028} \,\text{pb}$

Cross section for anti-top production is identical

N. Kidonakis, Phys. Rev. D 81, 054028 (2010), arXiv:1001.5034 [hep-ph]

Single top production at the LHC - s channel

 $\sigma_{s-\text{channel}}^{\text{NNLOapprox, top}}(m_t = 173 \,\text{GeV}, 7 \,\text{TeV}) = 3.17 \pm 0.06^{+0.13}_{-0.10} \,\text{pb}$

 $\sigma_{s-\text{channel}}^{\text{NNLOapprox, top}}(m_t = 173 \,\text{GeV}, 10 \,\text{TeV}) = 5.16 \pm 0.09^{+0.20}_{-0.14} \,\text{pb}$

 $\sigma_{s-\text{channel}}^{\text{NNLOapprox, top}}(m_t = 173 \,\text{GeV}, 14 \,\text{TeV}) = 7.93 \pm 0.14^{+0.31}_{-0.28} \,\text{pb}$

Single antitop production at the LHC - s channel

Single antitop LHC s-channel NNLO approx (NNLL) $\mu=m_{t}$

Single antitop at pp colliders s-channel $\mu=m_{\pm}=173 \text{ GeV}$

 $\sigma_{s-\text{channel}}^{\text{NNLOapprox, antitop}}(m_t = 173 \text{ GeV}, 7 \text{ TeV}) = 1.42 \pm 0.01^{+0.06}_{-0.07} \text{ pb}$ $\sigma_{s-\text{channel}}^{\text{NNLOapprox, antitop}}(m_t = 173 \text{ GeV}, 10 \text{ TeV}) = 2.48 \pm 0.02^{+0.09}_{-0.13} \text{ pb}$ $\sigma_{s-\text{channel}}^{\text{NNLOapprox, antitop}}(m_t = 173 \text{ GeV}, 14 \text{ TeV}) = 3.99 \pm 0.05^{+0.14}_{-0.21} \text{ pb}$

Associated production of a top quark with a W^-

Two-loop eikonal diagrams

+ top quark self-energy graphs

Associated production of a top quark with a charged Higgs

NNLO approx corrections increase NLO cross section by ~ 15 to $\sim 20\%$

Summary

- NNLL resummation for top quark pair and single top production
- $t\bar{t}$ production cross section and p_T distributions
- *s*-channel single top production cross section
- $bg \rightarrow tW^-$ and $bg \rightarrow tH^-$ at LHC
- NNLO approx corrections for top pair and single top production are significant at Tevatron and LHC