Phase diagram of hot QCD in an external magnetic field

Eduardo S. Fraga

<u>Instituto de Física</u> Universidade Federal do Rio de Janeiro

Based on work done with Ana Júlia Mizher & Maxim Chernodub:

ESF & AJM, Chiral transition in a strong magnetic background. Phys.Rev.D78:025016,2008. arXiv:0804.1452 [hep-ph]

ESF & AJM, Can a strong magnetic background modify the nature of the chiral transition in QCD? Nucl.Phys.A820:103C-106C,2009. arXiv:0810.3693 [hep-ph]

AJM, MC & ESF, Phase diagram of hot QCD in an external magnetic field: possible splitting of deconfinement and chiral transitions. arXiv:1004.2712 [hep-ph]

High magnetic fields in <u>non-central</u> RHIC collisions

[Kharzeev, McLerran & Warringa (2008)]

Pictorially:

Pictorially:

<u>Several theoretical/phenomenological questions arise:</u>

- How does the QCD phase diagram look like including a nonzero uniform B ? (another interesting "control parameter" ?)
- Are there modifications in the nature of the phase transitions ?
- Do chiral and deconfining transitions behave differently ?
- How is the Polyakov loop potential affected ?
- Are there other new phenomena (besides the chiral magnetic effect) ?
- How does the T vs B phase diagram look like ?

• Which are the good observables to look at ? Can we investigate it experimentally ? Can we simulate it on the lattice ?

Here, we consider effects of a magnetic background on the chiral and deconfining transitions at finite temperature in an effective model for QCD

<u>Other approaches</u> (most concerned about <u>vacuum effects</u>):

NJL:

- Klevansky & Lemmer (1989)
- Gusynin, Miransky & Shovkovy (1994/1995)
- Klimenko et al. (1998–2008)
- Hiller, Osipov, ... (2007-2008)
- Boer & Boomsma (2009)
- Fukushima, Ruggieri & Gatto (2010) PNJL
- ...

χPT:

- Shushpanov & Smilga (1997)
- Agasian & Shushpanov (2000)
- Cohen, McGady & Werbos (2007)
- Agasian & Fedorov (2008)
- ...

Large-N QCD:

• Miransky & Shovkovy (2002)

Quark model:

• Kabat, Lee & Weinberg (2002)

7

Effective theory

[A.J. Mizher, M. Chernodub & ESF (2010)]

A. Degrees of freedom and approximate order parameters

O(4) chiral field: $\phi = (\sigma, \vec{\pi}), \quad \vec{\pi} = (\pi^+, \pi^0, \pi^-)$

quark spinors:

$$\psi = \left(\begin{array}{c} u \\ d \end{array} \right)$$

Polyakov loop:

$$\Phi(x) = \frac{1}{3} \operatorname{Tr} \Phi(x), \quad \Phi = \mathcal{P} \exp\left[i \int_{0}^{1/T} \mathrm{d}\tau A_4(\vec{x}, \tau)\right]$$

Chiral symmetry: $\begin{cases} \langle \sigma \rangle \neq 0 &, & \text{low } T \\ \langle \sigma \rangle &= 0 &, & \text{high } T \end{cases}$

L

Confinement : $\begin{cases} \langle L \rangle &= 0 \ , & \text{low } T \\ \langle L \rangle &\neq 0 \ , & \text{high } T \end{cases}$

B. Chiral Lagrangian

$$\mathcal{L}_{\phi}(\sigma, \vec{\pi}) = \frac{1}{2} (\partial_{\mu} \sigma \partial^{\mu} \sigma + \partial_{\mu} \pi^{0} \partial^{\mu} \pi^{0}) + D_{\mu}^{(\pi)} \pi^{+} D^{(\pi)\mu} \pi^{-} - V_{\phi}(\sigma, \vec{\pi})$$
$$D_{\mu}^{(\pi)} = \partial_{\mu} + iea_{\mu} \qquad a_{\mu} = (a^{0}, \vec{a}) = (0, -By, 0, 0)$$

- $SU(2) \times SU(2)$ spontaneously broken + explicit breaking by massive quarks
- All parameters chosen to reproduce the vacuum features of mesons

[+ thermal quarks: Gell-Mann & Levy (1960); Scavenius, Mócsy, Mishustin & Rischke (2001); ...]

$$V_{\phi}(\sigma, \vec{\pi}) = \frac{\lambda}{4} (\sigma^2 + \vec{\pi}^2 - v^2)^2 - h\sigma$$

= $\frac{1}{2} m_{\sigma}^2 \sigma^2 + \frac{1}{2} m_{\pi}^2 (\pi^0)^2 + m_{\pi}^2 \pi^+ \pi^- + \dots$

C. Quark sector

$$\mathcal{L}_{q} = \overline{\psi} \left[i D - g(\sigma + i\gamma_{5} \vec{\tau} \cdot \vec{\pi}) \right] \psi$$
$$D = \gamma^{\mu} D_{\mu}^{(q)}, \qquad D_{\mu}^{(q)} = \partial_{\mu} - iQ a_{\mu} - iA_{\mu}$$

Diagonalized SU(3) gauge field: $A_{\mu} = t_3 A_4^{(3)} + i t_8 A_4^{(8)}$

after diagonalizing the untraced Polyakov loop:

$$L(x) = \frac{1}{3} \operatorname{Tr} \Phi(x), \quad \Phi = \mathcal{P} \exp\left[i \int_{0}^{1/T} d\tau A_4(\vec{x}, \tau)\right] \qquad \Phi = \exp\left[i \left(t_3 \frac{A_4^{(3)}}{T} + t_8 \frac{A_4^{(8)}}{T}\right)\right] \\ = \operatorname{diag} \left(e^{i\varphi_1}, \ e^{i\varphi_2}, \ e^{i\varphi_3}\right)$$

Electric charge matrix:
$$Q \equiv \begin{pmatrix} q_u & 0 \\ 0 & q_d \end{pmatrix} = \begin{pmatrix} +\frac{2}{3}e & 0 \\ 0 & -\frac{e}{3} \end{pmatrix}$$

D. Confining potential

$$\frac{V_L(L,T)}{T^4} = -\frac{1}{2}a(T) L^*L + b(T) \ln\left[1 - 6L^*L + 4\left(L^{*3} + L^3\right) - 3\left(L^*L\right)^2\right]$$

$$a(T) = a_0 + a_1\left(\frac{T_0}{T}\right) + a_2\left(\frac{T_0}{T}\right)^2,$$

$$b(T) = b_3\left(\frac{T_0}{T}\right)^3$$

$$\mathcal{L}_L = -V_L(L,T)$$

All parameters obtained demanding [Roessner et al. (2008)]:

- the Stefan-Boltzmann limit is reached at T -> ∞
- a first-order phase transition takes place at $T=T_0$
- the potential describes well lattice data for the thermodynamic functions (pressure, energy density and entropy)

Incorporating a magnetic background in loop integrals

[ESF & Mizher (2008)]

Let us assume the system is in the presence of a magnetic field background that is constant and homogeneous:

$$ec{B}=B\hat{z}$$
 choice of

$$A^{\mu} = (A^0, \vec{A}) = (0, -By, 0, 0)$$

• quarks (new dispersion relation):

• integration measure:

T > 0:

$$\Gamma = \mathbf{O}: \int \frac{d^4k}{(2\pi)^4} \mapsto \frac{|q|B}{2\pi} \sum_{n=0}^{\infty} \int \frac{dk_0}{2\pi} \frac{dk_z}{2\pi}$$

$$T\sum_{\ell} \int \frac{d^3k}{(2\pi)^3} \mapsto \frac{|q|BT}{2\pi} \sum_{\ell} \sum_{n=0}^{\infty} \int \frac{dk_2}{2\pi}$$

[A.J. Mizher, M. Chernodub & ESF (2010)]

A. Vacuum contribution

The vacuum contribution can be expressed as the following Heisenberg-Euler energy density:

$$\Omega_q^{\rm vac}(B) = \frac{1}{iV_{4d}} \log\left[\frac{\det(i\not\!\!\!D^{(q)} - m_q)}{\det(i\not\!\!\!\partial - m_q)}\right] = N_c \cdot \frac{(qB)^2}{8\pi^2} \int_0^\infty \frac{ds}{s^3} \left(\frac{s}{\tanh s} - 1 - \frac{s^2}{3}\right) \, e^{-s \, m_q^2/(qB)}$$

But we can also compute its contribution to the effective potential in the usual MSbar scheme

$$\frac{V_{\text{vac}}(\xi, b)}{v^4} = -\frac{N_c b^2}{2\pi^2} \sum_{f=u,d} r_f^2 F\left(\frac{g^2 \xi^2}{2r_f b}\right)$$
$$F(x) \equiv \zeta'(-1, x_f) - \frac{1}{2}(x_f^2 - x_f)\log x_f + \frac{x_f^2}{4}$$

(v used as mass scale)

B. Paramagnetic contribution

- Computed in an analogous fashion.
- However, more involved: sums over Matsubara frequencies and Landau levels, SU(3) field, ...

The final result can be written as:

K

C. Paramagnetically-induced breaking of Z(3) [A.J. Mizher, M. Chernodub & ESF (2010)]

The magnetic field drastically affects the potential for the Polyakov loop. For <u>very large</u> fields $|q|B \gg m_a^2$:

$$\Omega_q^{\text{para}} = -3 \frac{g\sigma |q| BT}{\pi^2} K_1 \left(\frac{g\sigma}{T}\right) \text{Re} L$$
(not Z(3) invariant)

New phenomenon: the magnetic field tends to break Z(3) and induce deconfinement, forcing <L> to be real-valued!

Phase structure

[A.J. Mizher, M. Chernodub & ESF (2010)]

Case 1:
$$B = 0$$
, $T \neq 0$

(i) $\phi = 0$ (chiral):

(ii) $\phi \neq 0$ (chiral + deconf):

Case 2. B \neq 0 , T \neq 0 , $\varphi \neq$ 0:

Effective potential

(i) Chiral condensate direction:

Without vacuum corrections

- No barrier: crossover for the chiral transition.
- System smoothly drained to the true vacuum: no bubbles or spinodal instability.

- Clear barrier: 1st order chiral transition.
- Part of the system kept in the false vacuum: some bubbles and spinodal instability, depending on the intensity of supercooling.

With vacuum corrections

ICHEP, Paris, July 2010

Phase diagrams

Final remarks

• <u>Strong</u> magnetic fields can modify the nature and the lines of the chiral and the deconfining transitions, opening new possibilities in the study of the phase diagram of QCD.

• New phenomenon: paramagnetically-induced breaking of Z(3).

• Perhaps the two transition lines split for high values of B. In the effective theory we consider, that depends on including or not vacuum contributions (not clear).

A thorough investigation of the phase diagram on the lattice is very much necessary. 2nd scenario seems consistent with preliminary lattice results [D'Elia, Mukherjee, Sanfilippo (2010)] & PNJL [Gatto & Ruggieri (2010)].

• Either scenario is exciting and brings new possibilities: 1st order transition, splitting of lines, new phases, magnetic breaking of Z(3), ...

Back up slides

ICHEP, Paris, July 2010

Motivation

Strong interactions under intense magnetic fields can be found, in principle, in a variety of systems:

High density and low temperature

• "Magnetars": B ~ 10¹⁴–10¹⁵ G at the surface, much higher in the core [Duncan & Thompson (1992/1993)]

• Stable stacks of π^0 domain walls or axial scalars (η , η') domain walls in nuclear matter: B ~ 10^{17} - 10^{19} G [Son & Stephanov (2008)]

<u>Outline</u>

* Expected phase diagram

Effective theory for the chiral and deconfining transitions: the linear sigma model coupled to quarks and to the Polyakov loop

- Incorporating a magnetic background in loop integrals
- * Free energy at one loop and some results
- Phase structure
- ✤ Final remarks

E. Physical setup

- "Fast" degrees of freedom: quarks -> thermal & quantum fluctuations. "Slow" degrees of freedom: mesons -> treated classically.
- Framework: coarse-grained Landau-Ginzburg effective potential (mean-field treatment).
- Quarks constitute a thermalized gas that provides a background in which the long wavelength modes of the chiral condensate evolve.
- Mesons feel the effect of Polyakov loops via quarks.
- All parameters fixed by vacuum properties & pure gauge lattice results.

From previous results:

- Deconfining: Agasian & Fedorov (2008)
- Chiral: ESF & A.J. Mizher (2008)

[A.J. Mizher, M. Chernodub & ESF (2010)]

(ii) Re[L] direction:

- Jump in the evolution of the effective potential with T 1^{st} order transition.
- σ is at the minimum for each temperature.
- Jump in σ .

With vacuum corrections

Without vacuum corrections

• Smooth modification of the effective potential (no jumps) – crossover.

- $\bullet \ \sigma$ is at the minimum for each temperature.
- No jump in σ .