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gh magnetic fields in non-central RHIC collisions

[Kharzeev, McLerran & Warringa (2008)]

eB~ 104-10°> MeV?2 ~ 10 G

[Voloshin, QM2009]

-
-
(Y

* "Magnetars”: B ~ 10!4-10"> G at
the surface, higher in the core
[Duncan & Thompson (1992/1993)]

e Early universe (relevant for
nucleosynthesis): B~ 10%* G for the
EWPT epoch [Grasso & Rubinstein (2001)]

Plus: mechanism based on
separation of charge for the
detection of the Chiral Magnetic

Effect and P-odd effects
[Voloshin (2000,2004), Kharzeev (2006);
Kharzeev & Zhitnitsky (2007); Kharzeey,
McLerran & Warringa (2008); Fukushima,
Kharzeev & Warringa (2008)]
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Several theoretical/phenomenological questions arise:

e How does the QCD phase diagram look like including a nonzero uniform B ?
(another interesting “control parameter” ?)

* Are there modifications in the nature of the phase transitions ?
* Do chiral and deconfining transitions behave differently ?

* How is the Polyakov loop potential affected ?
* Are there other new phenomena (besides the chiral magnetic effect) ?

* How does the T vs B phase diagram look like ?

* Which are the good observables to look at ? Can we investigate it
experimentally ? Can we simulate it on the lattice ?

Here, we consider effects of a magnetic background on the chiral and
deconfining transitions at finite temperature in an effective model for QCD
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Other approaches (most concerned about vacuum effects):

NJL:
* Klevansky & Lemmer (1989)
e Gusynin, Miransky & Shovkovy (1994/1995)
e Klimenko et al. (1998-2008)
e Hiller, Osipov, ... (2007-2008)
e Boer & Boomsma (2009)
 Fukushima, Ruggieri & Gatto (2010) - PNJL

YAPT:
 Shushpanov & Smilga (1997)
e Agasian & Shushpanov (2000)
* Cohen, McGady & Werbos (2007)
* Agasian & Fedorov (2008)

Large-N QCD:
* Miransky & Shovkovy (2002)

Quark model:
 Kabat, Lee & Weinberg (2002)
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Effective ’rheory [A.J. Mizher, M. Chernodub & ESF (2010)]

A. Degrees of freedom and approximate order parameters

O(4) chiral field: ¢ = (o,7), 7= (rt, 7%, 77)
; U
quark spinors: Y = ( J )
1/T
Polyakov loop: L(z) = %Tr d(r), ®=Pexp {z / dTA4(a‘:‘,T)]

0

: _ () # 0 |, low T
Chiral symmetry : o = 0 high T
g
. (L) = 0 , low T°
Confinement : { (L) # 0 . high T
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B. Chiral Lagrangian
1
Ly(0,7) = 5(0u00"0 + 0,7°0"7°) + DVt DHr™ — Vy (o, 7)

D™ =9, + iea, a, = (a’,a@) = (0,—By,0,0)

e SU(2) x SU(2) spontaneously broken + explicit breaking by massive quarks
* All parameters chosen fo reproduce the vacuum features of mesons

[+ thermal quarks: Gell-Mann & Levy (1960); Scavenius, Mocsy, Mishustin & Rischke (2001); ...]

A
Vo(o, ) = 1(02 + 72 —v?)? — ho
1 1
— §m302 + §m727(7ro)2 +mantaT + ...

ICHEP, Paris, July 2010



C. Quark sector

Lo =Y [i) —glo+ivsT - 7))

D = VMDEL‘I) : D/(f) =0, —1Qa, — 14,

Diagonalized SU(3) gauge field: Au = 13 AELB) + 1 13 AELS)
after diagonalizing the untraced Polyakov loop:

1/T (3) (8)
1 (Al Ay
L(x) = gTr O(x), P =Pexp {z / d’i‘A4(f,7‘)] ® = exp|if t3 T + 13 T

0

= diag (e'#, e'%2, '¥?)

w 0 se 0
Electric charge matrix: Q = ( qo 0" ) = ( +§€ P )
3
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D. Confining potential

VL(ZZ’ T) _ —%a(T) L*L + b(T) In [1 _6L*L +4 <L*3 + L3) ~3 (L*L)Q}

T, T\ °
a(T) = ap+a (?0)4‘&2 <?0) )

All parameters obtained demanding [Roessner et al. (2008)]:

* the Stefan-Boltzmann limit is reached at T -> oo

* a first-order phase transition takes place at T=T,

* the potential describes well lattice data for the
thermodynamic functions (pressure, energy density

and entropy)
11
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Incorporating a magnetic background in loop integrals

B = B3

[ESF & Mizher (2008)]

Let us assume the system is in the presence of a magnetic field
background that is constant and homogeneous:

e quarks (new dispersion relation):

"0, —m)p =0

—)

— [T 0O 1 _ -
choice of gauge A (A ’ A> (07 By, 0, 0
1" p3 —p? —m?+qBo q° B? Da 2 | -
- (y) +2m _( ) 2m ) " Tom (Z/ + q—B> _ u(y) =0
Din = P2 +m°+ (2n+1—0)|q|B

* integration measure:

T>0:

T-oif <d4

|QIB Z

n=—0

“dko dk,
2T 27

Pk

ICJ\BT

n=_0
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Free energy at one loop and some results
[A.J. Mizher, M. Chernodub & ESF (2010)]

A. Vacuum contribution

The vacuum contribution can be expressed as the following
Heisenberg-Euler energy density:

o

1 det (i) — m,) (¢B)? [ds S s\ . o
Q(B) = —1 d =N, -— [ — — 1= = sm/(qB)
. (B) 1Via = det(id) — my) 872 /33 tanh s 3 )€

But we can also compute its contribution to the effective potential in
the usual MSbar scheme

Vvac(gab) _ _Ncb2 Z T;F (92§2)

vt 272 2r b .
f=u,d %
) ,
Y 1 0%
F(z) = ¢(=Lay) = 5(27 —ag)logzy +
552, bzg, th
v v v
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B. Paramagnetic contribution

* Computed in an analogous fashion.

* However, more involved: sums over Matsubara frequencies and Landau
levels, SU(3) field, ...

The final result can be written as:

|/ para b bt?
(g’fi’@’ b _2L7T2K(b/t2,€/t,¢17¢2)

co 3 00
K (&, ¢1,02,b,t) = Z Z Z Z/ dz log (1 + e 2V HAang (ED)/ 4 9o/ @ Hitans (GD)/F o sz)
0

f=u,d s=+1/2n=0 i=1

fosnf = [9252 +(2n+1— 23)7"fb] 1/2

s
1l
S
1l

, 0

<19
Il
SH R

eB
o

qr =rreB sgn(qy)
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C. Paramagnetically-induced breaking of Z(3) [A3J Mizher, M. Chernodub & ESF (2010)]

The magnetic field drastically bl g
affects the potential for the
Polyakov loop. For very large

fields IqlB >> m 2:

ara 90lq|BT . (g0

(not Z(3) invariant)

New phenomenon: the magnetic
field tends to break Z(3) and
induce deconfinement, forcing
<L> to be real-valued!

v, 15
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Phase structure [A.J. Mizher, M. Chernodub & ESF (2010)]

Case1: B=0,T#0

(i) ¢ = O (chiral): (ii) ¢ # O (chiral + deconf):
effective potential condensates
25 T T . | F— ‘ T T T T T
“EEE] : =
r = T=160MeV NS . T e, o <> 7
- = T=180MeV B =
<) .
78}
= .
72}
o4
_qg 0.5} LRI -
= O
5 eO
C g
8.
0
F Ceq,,
I 1 L 1 i A § h 4 h 4 200080
?88 150 200 250 300 350 400
T (MeV)
f = O'/’U (v used as mass scale)
crossover
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Case 2.B#0,T#0, d * 0:

Effective potential

(i) Chiral condensate direction:

Without vacuum corrections

= T=150MeV
= T=190MeV
v 0 T=205MeV

—
(=]
T
1

=10m )

AVN' (B
o

* No barrier: crossover for the chiral transition.

* System smoothly drained to the true vacuum: no
bubbles or spinodal instability.

ICHEP, Paris, July 2010

' ' ' — e Clear barrier: 15t order chiral transition.

* Part of the system Kept in the false vacuum:
some bubbles and spinodal instability, depending
e - / on the intensity of supercooling.

With vacuum corrections

30 : , . ,

— T=218MeV

.+ T=250MeV .
20 — T=150MeV . .

mAg B *

E 10

i

d

11_2 0

2 |

-10
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Phase diagrams

Without vacuum corrections

e Chiral and deconfinement lines coincide.

* The transitions become 15t order: crossover
for B=0, strong 15" order for large B.

* Magnetic catalysis reproduced in the
vacuum. [ESF & A.J. Mizher (2008)]

With vacuum corrections

b | T T T T T T T
Bl (Chiral transition

200 = =+ Deconfinement transition
—_ 175
-
®
2
= 150 =

125

100 L A A L

0 10 20 30 40

B(m_*)

 Chiral and deconfinement (crossover) lines
initially coincide, then split (3 phases).

* The deconfinement line flattens out for
high enough B (does not go to zero).

* Chiral restoration becomes more and more
difficult for high B.

30 ——————T—— T
== (Chiral transition - /
>0l = = Deconfinement transition / i
/
/7
p— / —
0 /
X 7
7
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B(m_*)
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Temperature, T

T(MeV)

200 =

175

125

1
=0 Dec

Expected phase diagram

Restored chiral symmetry,
deconfinement

Chiral transition

- symmetry,

—

Broken chiral symmetry,
confinement

Broken chiral

deconfinement

*~)
*~)
*~)

Magnetic field, eB

"

ansition

T nement transition

100

B(m_")

I 250 -
= 260 . -
o /7
= p
= 240f , -
”
”~
-
220 - - . — o =
I R .
- ‘ . -
1 1 1
205 10 20 30
B(m_’)
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Final remarks

e Strong magnetic fields can modify the nature and the lines of the
chiral and the deconfining transitions, opening new possibilities in the
study of the phase diagram of QCD.

* New phenomenon: paramagnetically-induced breaking of Z(3).

e Perhaps the two transition lines split for high values of B. In the
effective theory we consider, that depends on including or not vacuum
contributions (not clear).

A thorough investigation of the phase diagram on the lattice is very
much necessary. 2nd scenario seems consistent with preliminary lattice
results [p'Elia, Mukherijee, Sanfilippo (2010)] & PNJL [catto & Ruggieri (2010)].

o Either scenario is exciting and brings new possibilities: 15" order
transition, splitting of lines, new phases, magnetic breaking of Z(3), ...

20
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Motivation

Strong interactions under intense magnetic fields can be found,
in principle, in a variety of systems:

@,

% High density and low temperature

“"Magnetars”: B ~ 10'4-10'> G at the surface, much higher in the core
[Duncan & Thompson (1992/1993)]

Known magnetar candidates

Making a magnetar

Hot, newborn star
churns and mixes

Internal convection
carries off heat

If spinning faster than

200 revolutions/second,
the dynamo action quickly
builds up the magnetic field

 Stable stacks of n° domain walls or axial scalars (n,1n°) domain walls in
nuclear matter: B ~ 107-10'° G [Son & Stephanov (2008)]

22
ICHEP, Paris, July 2010



Outline

“* Expected phase diagram

¢+ Effective theory for the chiral and deconfining ftransitions: the
linear sigma model coupled to quarks and to the Polyakov loop

“* Incorporating a magnetic background in loop integrals
“* Free energy at one loop and some results
% Phase structure

*¢* Final remarks

23
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E. Physical setup

* “Fast” degrees of freedom: quarks -> thermal & quantum fluctuations.
"Slow” degrees of freedom: mesons -> treated classically.

e Framework: coarse-grained Landau-Ginzburg effective potential
(mean-field treatment).

* Quarks constitute a thermalized gas that provides a background in
which the long wavelength modes of the chiral condensate evolve.

* Mesons feel the effect of Polyakov loops via quarks.

 All parameters fixed by vacuum properties & pure gauge lattice results.

24
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From previous results:

* Deconfining:
Agasian & Fedorov (2008)

* Chiral:
ESF & A.J. Mizher (2008)

Temperature, T

Expected phase diagram

Restored chiral symmetry,
deconfinement

jtion
. ra‘ tra“Sl .
__C_‘_“ - - - Broken chiral
— — symmetry,
deconfinement

eco ]
nﬁmng transition

Broken chiral symmetry,
confinement

Magnetic field, eB

[A.J. Mizher, M. Chernodub & ESF (2010)]
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(ii) Re[L] direction:

* Jump in the evolution of the effective
potential with T - 15t order transition.

* 0 is at the minimum for each temperature.

e Jump in O.

With vacuum corrections

VT T T T 1T
- — T=180MeV I
200 = T=220MeV I =
: = T=250MeV | -
™, 190 -
g
% 100 -
) I
VD*
= O 7
oF _
= 0] ] 1 ' L ] 1 -
0.2 0 02 04 0.6 08 1
<Re[L]>

Without vacuum corrections

100 ‘r I ' I ' 1 ' 1 ' 1
L — T=100MeV d
W - T=158 MeV /
75kF ¢ - = T=175MeV r
\. -+ T=200MsV

02 0 02 04 08
<Re[L]=

* Smooth modification of the effective
potential (no jumps) - crossover.

* 0 is at the minimum for each temperature.
* No jump in O.
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