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We derive a closed form expression for the sum of all the infrared divergent contributions to the free-energy of a gas of gravitons. An important ingredient of our calculation is the use of a gauge fixing procedure such that the graviton
propagator becomes both traceless and transverse. This has been shown to be possible, in a previous work, using a general gauge fixing procedure, in the context of the lowest order expansion of the Einstein-Hilbert action, describing
non-interacting spin two fields. In order to encompass the problems involving thermal loops, such as the resummation of the free-energy, in the present work, we have extended this procedure to the situations when the interactions are taken

1Into account.

The problem

How to obtain the sum of all the IR divergent (three or more loops) contributions to the free-energy of
spin-two fields, in d-dimensions. This can be represented as [1, 2, 3].
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where the curly line and the blob represent the tree-level graviton propagator and the static contribution to
the graviton self-energy, respectively.

The method

The gauge theory of Spin-two fields 1s described by the Einstein-Hilbert action plus gauge fixing and ghosts,
in the weak field approximation [4]

Juv = Nuv + K,hluy; k= V321G, (2)

The gauge freedom 1s employed in order to obtain the most convenient expression for the tree-level graviton
propagator, D, ,, 3. More specifically, if there 1s a gauge fixing procedure such that the following conditions

are fulfilled

"Dy oK) =0 (3a)
KD g (k) = 0, (3b)

then the individual contributions in (1) can be simplified and the sum can be performed in a closed form
expression. This gauge fixing is indeed possible as we have verified previously [3].

We also need the finite temperature result for the static graviton seltf-energy [6, 7]. Since this 1s a gauge
independent quantity we do not need to compute it again. Nonetheless, we did compute it in order to test the
gauge fixing procedure developed in [5] (the diagrams are shown in figures 1 and 2).

We employ the most convenient and physically illuminating tensor basis for both D11 and the static graviton

self-energy, which is given by the three linearly independent transverse and traceless tensors. With this
choice, each term 1n the integrand of Eq. (1) can be reduced to
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where the quantities C!, T = A, B, C are the transverse and traceless components of the self-energy.

Results

From Eq. (4) the sum of all the ring diagrams can be readily performed using — > > (—x)"/n = log(1 +
r) — x, so that the free-energy can be written as
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where the integral
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can be done 1n a closed form (the same kind of expression also arises in the context of scalar fields). This
yields the following expression for the free-energy of gravitons in d-dimensions
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This result exhibts some interesting features. First, for odd space-time dimensions it is a real and singular
function; for even space-time dimensions, it 1s a finite and non-analytic function of GT2 as one would
expect for a non-perturbative quantity. However, 1n this case it acquires an imaginary part. For instance,
for d = 4 the third term inside the curly brackets, which can be traced back to the T¢ component of
the self-energy, is equal to (—7/ 3)3/ 2. As a result, one would conclude that the gravitational C-mode is
unstable, since the imaginary part of the free energy is connected with the decay rate of the quantum vacuum
[8]. However, a detailed investigation shows that the graviton self-energy, which 1s proportional to GT?,
1s of the same order as the solution of the Einstein equation for the curvature tensor, when the thermal
energy momentum tensor 1s taken into account. Therefore, by consistency, one should also take into account
the curvature corrections in the analysis of instabilities of gravity at finite temperature. These corrections
[6, 7] have the effect of adding some extra contributions to the self-energy in such a way that the C'-mode
contribution to $(T") would change the third term of the curly bracket of Eq. (7) to (—7/3 +5/27)3/2, which
1s still imaginary. This term may be related to an imaginary value of a thermal Jeans mass [6, 7], which
reflects the instability of the system due to the universal attractive nature of gravity.
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Figure 1: Diagrams which contribute the static limit of the graviton self-energy. The curly and wave lines
represent respectively gravitons and the 6 ghost. The dashed and dot-dashed lines represent the two types
Fermionic ghosts. Graphs (a), (b), (¢) and (f) have a symmetry factor 1/2. A factor of (—1) is associated
with the Fermionic ghost loops in figures (c) and (d).

Figure 2: Contributions involving of the 6 ghosts (wavy lines) to the static limit of the graviton self-energy.
Except for graph (j), all graphs have a symmetry factor 1/2.
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