Introductio

X(3872). Decays and Lineshapes 00000000000 Other XYZ mesons

Hadronic molecules

P. G. Ortega, D. R. Entem and F. Fernandez

E-mail: pgortega@usal.es Grupo de Física Nuclear / Instituto de Física Fundamental y Matemáticas University of Salamanca

X(3872). Decays and Lineshapes	Other XYZ mesons	Summary

Outline

2 X(3872). Decays and Lineshapes

Experimental situation of X(3872)

Narrow state seen in *B* decays and $p\bar{p}$ collision decaying to $\pi\pi J/\psi$, $\pi\pi\pi J/\psi$, $\gamma J/\psi$ and $D^0\bar{D}^0\pi^0$.

Measured Pro	perties of $X(3872)$		
00	000000000	000	
Introduction	X(3872). Decays and Lineshapes	Other XYZ mesons	Summary

• Quantum Numbers compatible with $J^{PC} = 1^{++}$ (strongly preferred by the data) and $J^{PC} = 2^{-+}$.

• Width :
$$\Gamma = 3.0 \begin{cases} +2.1 \\ -1.7 \end{cases} MeV$$

• Mass : $M_X = 3871.55 \pm 0.20 \ MeV/c^2 \rightarrow below \ D^0 \overline{D}^{*0}$ mass threshold of $3871.80 \pm 0.35 \ MeV/c^2$

•
$$R_1 = \frac{\mathcal{B}(X \to J/\psi \pi^+ \pi^- \pi^0)}{\mathcal{B}(X \to J/\psi \pi^+ \pi^-)} = \begin{cases} 1.0 \pm 0.4 \pm 0.3 \text{ (Belle)} \\ 0.8 \pm 0.3 \text{ (BaBar)} \end{cases}$$

• $R_2 = \frac{\mathcal{B}(X \to J/\psi \gamma)}{\mathcal{B}(X \to J/\psi \pi^+ \pi^-)} = \begin{cases} 0.33 \pm 0.12 \text{ (BaBar)} \\ 0.14 \pm 0.05 \text{ (Belle)} \end{cases}$,
• $R_3 = \frac{\mathcal{B}(X \to \psi(2S)\gamma)}{\mathcal{B}(X \to J/\psi \pi^+ \pi^-)} = 1.1 \pm 0.4 \text{ (BaBar)}.$

Experimental data suggest a weakly-bound D^0D^{*0} molecule coupled to 2P $c\bar{c}$ states.

Measured Pron	erties of $X(3872)$		
00	000000000	000	
Introduction	X(3872). Decays and Lineshapes	Other XYZ mesons	Summary

• Quantum Numbers compatible with $J^{PC} = 1^{++}$ (strongly preferred by the data) and $J^{PC} = 2^{-+}$.

• Width :
$$\Gamma = 3.0 \begin{cases} +2.1 \\ -1.7 \end{cases} MeV$$

• Mass : $M_X = 3871.55 \pm 0.20 \ MeV/c^2 \rightarrow below \ D^0 \overline{D}^{*0}$ mass threshold of $3871.80 \pm 0.35 \ MeV/c^2$

•
$$R_1 = \frac{\mathcal{B}(X \to J/\psi \pi^+ \pi^- \pi^0)}{\mathcal{B}(X \to J/\psi \pi^+ \pi^-)} = \begin{cases} 1.0 \pm 0.4 \pm 0.3 \text{ (Belle)} \\ 0.8 \pm 0.3 \text{ (BaBar)} \end{cases}$$

• $R_2 = \frac{\mathcal{B}(X \to J/\psi \gamma)}{\mathcal{B}(X \to J/\psi \pi^+ \pi^-)} = \begin{cases} 0.33 \pm 0.12 \text{ (BaBar)} \\ 0.14 \pm 0.05 \text{ (Belle)} \end{cases}$,
• $R_3 = \frac{\mathcal{B}(X \to \psi(2S)\gamma)}{\mathcal{B}(X \to J/\psi \pi^+ \pi^-)} = 1.1 \pm 0.4 \text{ (BaBar)}.$

P. G. Ortega, J. Segovia, D.R. Entem & F. Fernández Phys. Rev. D 81, 054023 (2010)

Introduction X	(3872). Decays and Lineshapes	Other XYZ mesons	Summary
00 0	000000000	000	

Ingredients of constituent quark model

- Model includes:
 - $\bullet~$ Chiral symmetry breaking $\rightarrow~$ Pseudo-Goldstone Bosons.

- $\bullet~$ QCD perturbative effects $\rightarrow~$ One Gluon Exchange.
- $\bullet~$ Confinement $\rightarrow~$ Non necessary for Meson-Antimeson interaction.
- Interactions:

$$V_{q_iq_j} = \begin{cases} q_iq_j = nn \Rightarrow V_{CON} + V_{OGE} + V_{\pi} + V_{\sigma} \\ q_iq_j = nQ \Rightarrow V_{CON} + V_{OGE} \\ q_iq_j = QQ \Rightarrow V_{CON} + V_{OGE} \end{cases}$$

Introd	
00	

Resonating Group Method and Gaussian Expansion Method

- Quark interactions \rightarrow Cluster interaction.
- Direct RGM Potential:

• $\phi_C(\vec{p}_C)$ is the wave function for cluster C solution of Schrödinger's equation using Gaussian Expansion Method.

	X(3872). Decays and Lineshapes	Other XYZ mesons	
00	000000000	000	
3			

$^{3}P_{0}$ Interaction

• Pair creation Hamiltonian:

$$\mathcal{H} = g \int d^3x \bar{\psi}(x) \psi(x)$$

• Non relativistic reduction:

$$T = -3\sqrt{2}\gamma' \sum_{\mu} \int d^{3}\rho d^{3}\rho' \, \delta^{(3)}(
ho +
ho') \left[\mathcal{Y}_{1}\left(rac{
ho -
ho'}{2}
ight) b^{\dagger}_{\mu}(
ho) d^{\dagger}_{
u}(
ho')
ight]^{C=1, l=0, S=1, J=0}$$

with
$$\gamma' = 2^{5/2} \pi^{1/2} \gamma$$
 and $\gamma = \frac{g}{2m}$

• Transition potential:

$$\langle \phi_{M_1} \phi_{M_2} \beta | T | \psi_{lpha} \rangle = Ph_{eta lpha} \delta^{(3)}(\vec{P}_{cm})$$

Introduction	X(3872). Decays and Lineshapes	Other XYZ mesons	Summary
00	000000000	000	
Modeling the 1	⁺⁺ sector		

- Hadronic state: $|\Psi\rangle = \sum_{\alpha} c_{\alpha} |\psi\rangle + \sum_{\beta} \chi_{\beta}(P) |\phi_{M1}\phi_{M2}\beta\rangle$
- Solving the coupling with $c\bar{c}$ states \rightarrow Schrödinger type equation:

$$\sum_{\beta} \int \left(H_{\beta'\beta}^{M_1M_2}(P',P) + V_{\beta'\beta}^{eff}(P',P) \right) \chi_{\beta}(P) P^2 dP = E \chi_{\beta'}(P')$$

with $V^{eff}_{\beta'\beta}(P', P)$:

- Inclusion of $J/\psi\rho$ and $J/\psi\omega$ channels necessary for strong decay description \rightarrow Rearrangement diagrams
- Small contribution to the mass

Figure: Diagrams included in the quark rearrangement process $DD^* \rightarrow \rho(\omega) J/\psi$.

Introd	

Results for X(3872) in a coupled channel approach

γ	E _{bind}	$c\bar{c}(2^{3}P_{1})$	$D^{0}D^{*0}$	$D^{\pm}D^{*\mp}$	$J/\psi ho$	$J/\psi\omega$
0.231	-0.60	12.40	79.24	7.46	0.49	0.40
0.226	-0.25	8.00	86.61	4.58	0.53	0.29

Table: Binding energy (in MeV) and channel probabilities (in %) for the X(3872) state for two values of the ${}^{3}P_{0}$ model γ parameter.

OO	A (3872). Decays and Linesnapes ○○○○○○○○○○○○○	000	
Radiative decay de	escription		

• Decay through molecular component:

$$\Gamma_{ANN} = \frac{4}{27} \alpha \frac{qE_{\Psi}}{M_X} e^{-\frac{q^2}{2\beta_D^2}} \left(\eta_{00} - \frac{1}{2}\eta_{+-}\right)^2$$

$$\Gamma_{VMD} = \frac{4}{27} \alpha \frac{qE_{\Psi}}{M_X} \left(3|\phi_{\rho}(r=0)|\chi_{\rho J/\Psi}(q) + |\phi_{\omega}(r=0)|\chi_{\omega J/\Psi}(q) \right)^2$$

• Decay through $c\bar{c}$ component:

$$\Gamma_{E1}\left(n^{2S+1}L_{J} \to n'^{2S'+1}L'_{J'}\right) = \frac{4\alpha e_{c}^{2}q^{3}}{3}(2J'+1)S_{fi}^{E}\,\delta_{SS'}\,|\mathcal{E}_{fi}|^{2}\frac{E_{f}}{M_{i}}$$

	X(3872). Decays and Lineshapes	Other XYZ mesons	
00	0000000000	000	

Strong decay description

$$\Gamma_{\pi^{+}\pi^{-}J/\psi} = \sum_{J,L} \int_{0}^{k_{max}} dk \frac{\Gamma_{\rho}}{(M_{X} - E_{\rho} - E_{J/\psi})^{2} + \frac{\Gamma_{\rho}^{2}}{4}} \left| \mathcal{M}_{\rho J/\psi}(k) \right|^{2}.$$

where

$$\mathcal{M}_{
ho J/\psi} = \int d^3 P \chi_{D\bar{D}^*}(P) h_{D\bar{D}^* \to
ho J/\psi}(P,P').$$

Introduction 00	X(3872). Decays and Lineshapes ○○○○○○○○○○○○	Other XYZ mesons	
Decay results			

Strong decay results

• Experimental results:

$$R_1 = \frac{\mathcal{B}(X \to J/\psi \pi^+ \pi^- \pi^0)}{\mathcal{B}(X \to J/\psi \pi^+ \pi^-)} = \begin{cases} 1.0 \pm 0.4 \pm 0.3 \\ 0.8 \pm 0.3 \end{cases},$$

• Theoretical results:

$E_{bind}(MeV)$	$\Gamma_{\pi^+\pi^-J/\psi}(KeV)$	$\Gamma_{\pi^+\pi^-\pi^0 J/\psi}(KeV)$	R_1
-0.60	27.61	14.40	0.52
-0.25	24.18	10.64	0.44

Introduction OO	X(3872). Decays and Lineshapes ○○○○○○○○○	Other XYZ mesons	
Decay results			

Radiative decay results

• Experimental results:

$$R_2 = \frac{\mathcal{B}(X \to J/\psi\gamma)}{\mathcal{B}(X \to J/\psi\pi^+\pi^-)} = \begin{cases} 0.33 \pm 0.12\\ 0.14 \pm 0.05 \end{cases},$$

Theoretical results:

$E_{bind}(MeV)$	$\Gamma^{VMD}_{J/\psi\gamma}$	$\Gamma^{ANN}_{J/\psi\gamma}$	R_2^M	$\Gamma^{car{c}}_{J/\psi\gamma}$	R2 ^{c̄} c	R_2
-0.60	0.014	0.056	2.510^{-3}	8.15	0.29	0.30
-0.25	0.011	0.045	2.310^{-3}	5.25	0.22	0.22

Table: Decays in KeV.

Molecular component \mapsto Vector meson dominance (VMD) and Annihilation (ANN) mechanisms.

 R_2^M is the ratio including only the contributions from the molecular part.

 $R_2^{c\bar{c}}$ from the $c\bar{c}$ component and R_2 is the full result.

Introduction 00	X(3872). Decays and Lineshapes ○○○○○○○○	Other XYZ mesons	Summary
Decay results			

Radiative decay results

- Experimental results: $R_3 = \frac{\mathcal{B}(X \to \psi(2S)\gamma)}{\mathcal{B}(X \to J/\psi\pi^+\pi^-)} = 1.1 \pm 0.4.$
- Theoretical results:

$E_{bind}(MeV)$	$\Gamma^{ANN}_{\Psi(2S)\gamma}$	R_3^M	$\Gamma^{c\overline{c}}_{\Psi(2S)\gamma}$	R ₃ ^{cc}	R ₃
-0.60	0.134	4.810^{-3}	9.80	0.35	0.34
-0.25	0.101	4.210^{-3}	6.31	0.26	0.26

Table: Decays in KeV.

Molecular component \rightarrow Annihilation (ANN) mechanisms.

 R_3^M is the ratio including only the contributions from the molecular part.

 $R_3^{c\bar{c}}$ from the $c\bar{c}$ component and R_3 is the full result.

Introduction	X(3872). Decays and Lineshapes	Other XYZ mesons	Summary
	0000000000		

Lineshapes

- Lippmann-Schwinger equation $\rightarrowtail t^{\beta\beta'}(\vec{p},\vec{p}',E)$ matrix
- Lineshapes

$$rac{dB_r((M_1M_2)^eta)}{dE} = ext{const} imes k |\mathcal{M}^eta(E)|^2 \Theta(E)$$

• Hadronic contribution $\mathcal{M}^{\beta}_{h}(E)$

• Mesonic contribution $\mathcal{M}_q^\beta(E)$

Introductio 00 X(3872). Decays and Lineshapes

Other XYZ mesons

Summary

GFN

Lineshapes for $E_b = -0.25 MeV$

Belle and BaBar data for the $B o KD^0 \overline{D}{}^0 \pi^0$ (Belle) and $B o KD^0 \overline{D}{}^{*0}$ (BaBar) reactions.

Introduction OO	X(3872). Decays and Lineshapes	Other XYZ mesons ●00	
Y(4008)			

• Mass and Width

$$J^{PC} = 1^{--},$$

 $M_Y = 4008 \pm 40^{+114}_{-28} MeV,$
 $\Gamma_Y = 226 \pm 44 \pm 87 MeV.$

Mass (MeV)	$c\bar{c}(2^{3}S_{1})$	$c\bar{c}(3^3D_1)$	$c\bar{c}(4^{3}S_{1})$	D^*D^*
3650.973	92.45 %	0.22 %	0.01%	7.30 %
3793.410	0.33 %	99.11%	0.00 %	0.56 %
4016.423	0.59 %	0.03 %	34.53 %	64.53%
4036.804	0.70 %	0.03 %	48.73 %	50.00 %

Table: Mass and probabilities with ${}^{3}P_{0} \gamma$ fitted to $\psi(3770) \rightarrow DD$ decay.

Introduct 00		X (3872). Decays and Lin 00000000000	eshapes	Other XYZ mesons O●O	
Hidd	len bottom	sector			
	Mesons	Threshold	JPC	³ P ₀	without ³ P ₀
:	BB	10558.56 MeV	0++	$g_{ch}^{'2} = 2.9 g_{ch}^2$	-0.02 <i>MeV</i>
	BB*	10604.38 <i>MeV</i>	$\left\{\begin{array}{c}1^{++}\\1^{+-}\end{array}\right.$	−1.31 <i>MeV</i> −0.01 <i>MeV</i>	−8.96 <i>MeV</i> −0.05 <i>MeV</i>
	B* B*	10650.20 <i>MeV</i>	$\left\{ \begin{array}{c} 0^{++} \\ 1^{+-} \\ 2^{++} \end{array} \right.$	g ^{'2} _{ch} = 2.70g ² _{ch} -0.04 MeV -4.02 MeV	g ^{'2} _{ch} = 2.80g ² _{ch} -0.04 MeV -9.26 MeV
	$BB_1(^1P_1)$	11002.5 <i>MeV</i>	$\left\{\begin{array}{c}1^{-+}\\1^{}\end{array}\right.$		$g_{ch}^{'2} = 1.3 g_{ch}^2 \ g_{ch}^{'2} = 1.13 g_{ch}^2$
	$BB_1({}^3P_1)$	11002.5 <i>MeV</i>	$\left\{\begin{array}{c}1^{-+}\\1^{}\end{array}\right.$		$g_{ch}^{'2} = 1.3g_{ch}^2 - 0.002 MeV_{GFN}$

Introd		
00		

X(3872). Decays and Lineshape 00000000000 Other XYZ mesons 00●

Hidden bottom sector

00	000000000	000	
Summary			

- X(3872) found as a weakly-bound $D^0 D^{*0}$ molecule coupled to $2^3 P_1 c\bar{c}$ state.
- Good description of the radiative and strong decays. Although $X(3872) \rightarrow \psi(2S)\gamma$ lower than expected.
- Lineshapes in good agreement with the data, specially for the mesonic production.
- Y(4008) found as molecule in the same formalism, coupled to $c\bar{c} \rightarrow$ Experimental confirmation needed.
- Rich spectroscopy in the hidden bottom sector.

Introduction	X(3872). Decays and Lineshapes	Other XYZ mesons	Summary
OO	00000000000	000	
Summary			

- X(3872) found as a weakly-bound $D^0 D^{*0}$ molecule coupled to $2^3 P_1 c\bar{c}$ state.
- Good description of the radiative and strong decays. Although $X(3872) \rightarrow \psi(2S)\gamma$ lower than expected.
- Lineshapes in good agreement with the data, specially for the mesonic production.
- Y(4008) found as molecule in the same formalism, coupled to $c\bar{c} \rightarrow$ Experimental confirmation needed.
- Rich spectroscopy in the hidden bottom sector.

Summary			
ntroduction DO	X(3872). Decays and Lineshapes 00000000000	Other XYZ mesons	Summary

- X(3872) found as a weakly-bound D^0D^{*0} molecule coupled to $2^3P_1 c\bar{c}$ state.
- Good description of the radiative and strong decays. Although $X(3872) \rightarrow \psi(2S)\gamma$ lower than expected.
- Lineshapes in good agreement with the data, specially for the mesonic production.
- Y(4008) found as molecule in the same formalism, coupled to $c\bar{c} \rightarrow$ Experimental confirmation needed.
- Rich spectroscopy in the hidden bottom sector.

	X(3872). Decays and Lineshapes	Other XYZ mesons	Sum
00	000000000	000	

Summary

Thanks for your attention

narv

Introduction	X(3872). Decays and Lineshapes	Other XYZ mesons	Summary
00	000000000	000	
D(2460)			
$D_{s1}(2400)$			

• Close thresholds

$$D^*K \longrightarrow M = 2504.16 \text{ MeV},$$

 $DK^* \longrightarrow M = 2763.70 \text{ MeV},$
 $D^*K^* \longrightarrow M = 2904.84 \text{ MeV}.$

• Close D_{s1} states

$$1^{3}P_{1} \longrightarrow M = 2571.475 \text{ MeV},$$

 $1^{1}P_{1} \longrightarrow M = 2575.934 \text{ MeV},$

M (MeV)	$D_{s1}(1^3P_1)$	$D_{s1}(1^1P_1)$	D*K	DK*	D*K*
2501.628	72.03 %	0 %	23.5 %	4.47 %	0 %
2430.604	0 %	75.13%	14.52%	4.57 %	5.78%
2494.290	52.62 %	9.32 %	33.92 %	3.40 %	0.73%

Table: Mass and probabilities with ${}^{3}P_{0} \gamma$ fitted to $\psi(3770) \rightarrow DD$ decay.

