Performance of the Tracking System at the LHCb Experiment

on behalf of the LHCb Collaboration

35th International Conference on HEP, Paris, France - July 2010

The LHCb experiment

- LHCb is an experiment dedicated to heavy flavour physics at the LHC.
- Its primary goal to look for indirect evidence of new physics in CP violation and rare decays of beauty and charm hadrons.

b \overline{b} - pairs produced predominantly close to beam direction ⇒ Forward spectrometer: 1.9 < η < 4.9

Nominal luminosity of $2 \cdot 10^{32}$ cm⁻² s⁻¹ \Rightarrow production of 10^{12} bb-pairs per year

M4 M5

Main detector requirements

Good vertex resolution [proper time]

Momentum resolution (MC): $\Delta p/p = 0.4\% - 0.55\%$

Good particle identification [K/ π separation]

Main detector requirements

Good vertex resolution [proper time]

Momentum resolution (MC): $\Delta p/p = 0.4\% - 0.55\%$

M4 M5 SPD/PS HCAL M3 Good particle identification [K/ π separation] Magnet T3 RICH2 M1RICH1 Vertex Locator -5m5m 10m

M4 M5

M3

Main detector requirements

- Good vertex resolution [proper time]
- Momentum resolution (MC): $\Delta p/p = 0.4\% 0.55\%$

Good particle identification [K/ π separation]

M4 M5

Main detector requirements

Good vertex resolution [proper time]

Momentum resolution (MC): $\Delta p/p = 0.4\% - 0.55\%$

Good particle identification [K/ π separation] Magnet

More details by Andrew Powell during the afternoon session

Vertex Detector (VELO)

21 silicon micro-strip stations with r- ϕ geometry

- 2 Pile-Up stations used in the trigger
- 2 retractable detector halves:
 - 8.2 mm from beam with stable beam condition,
 - 30mm from beam during injection and MD
 - 300µm foil separates detector vacuum from beam vacuum and constitutes beam-pipe in VELO region

Vertex Detector (VELO)

- 21 silicon micro-strip stations with r- ϕ geometry
- 2 Pile-Up stations used in the trigger
- 2 retractable detector halves:
 - 8.2 mm from beam with stable beam condition,
 - 30mm from beam during injection and MD
 - 300µm foil separates detector vacuum from beam vacuum and constitutes beam-pipe in VELO region

VELO performance

Vertex Locator

- Cluster finding efficiency 99.7 %
- Hit resolution as fraction of strip pitch and function of projected angle
 - Measured with hit-track residuals corrected for track uncertainty
 - Good agreement with MC given current alignment

Best resolution ~4 µm

- Module and sensor alignment known better than 5 μm
- Fill-to-fill variation along (x,y) of relative alignment of two halves within (± 5 μm, ± 3 μm)

More details in the Poster session

Silicon Tracker system

Track Turicensis (TT) detector

- Upstream of the magnet
- Four planes of Silicon microstrip sensors (0°, +5°, -5°, 0°)
- Readout pitch 183 µm pitch
- 500 µm thickness
- Area of 8.2 m² covered by Silicon, 143 k strips

Inner Tracker (IT) detector

- Downstream of the magnet
- 3 stations with 4 layers (0°, 5°, -5°, 0°)
- Readout pitch 198 μm
- 320/410 µm thickness for 1/2 sensor ladders
- Area of 4 m² covered 130 k readout strips

TT performance

Magnet T3

- 99.6 % of detector channels working
- Hit resolution 55 μm
- Misalignment 35 μm

IT performance

- 98.6 % of detector channels working
- Hit resolution 54 μm
- Misalignment 16 μm

Outer Tracker Detector (OT)

- Straw Tubes
- 3 stations with 4 double layers
 (0°, +5°, -5°, 0°)
- straw tube diameter 5 mm
- Gas: $Ar/CO_2/O_2 = 70/28.5/1.5$
- 56 k readout channels

OT Performance

Magnet T3

- 99.3 % channel working
- Space drift-time relation corresponds to expectation from test beam data
- Resolution 250 µm, close to nominal

PV resolution

- Vertex resolution
 - Measure resolutions by randomly splitting track sample in two
 - Compare split vertices of equal multiplicity
 - Method validated with MC
- PV resolution (x,y,z) with 25 tracks:
 - Data (15.8, 15.2, 91) μm
 - MC (11.5, 11.3, 57) μm
- Room for improvement: alignment, material description

Impact Parameter resolution

- Impact Parameter (IP) is defined as the closest distance of each track to the primary vertex:
- Measure x and y component of impact parameter
- Assume all tracks originate from primary interaction point
- Measure resolution as spread of IP distribution
- IP resolution up to 20 μm for the highest pt bins
- Room for improvement: alignment, material description

Invariant mass resolution

- Very precise momentum and mass resolution
- Not yet B field calibration
- Still some room for improvement

Track efficiency

- Efficiency of the tracking system:
 - Using Tag and Probe method with VELO and Calorimeter

Good agreement between data and MC

 Similar method can be used to evaluate the efficiency of the VELO

This method can be applied also to J/Y reconstruction

Track efficiency

Measure tracking efficiencies from data

Matching the VELO segment with a CALO cluster
T station

 Matching the Velo-Calo trajectory to the parameters of tracks found by each tracking algorithm

Good agreement between Data and MC **Both methods evaluate:**

$$Ratio\left(\frac{\varepsilon_{data}}{\varepsilon_{MC}}\right) = 0.99 \pm 0.02$$

Integrated over the full phase space

Track efficiency

16

Conclusion

- LHCb was designed with very ambitious tracking performances
- Very close to reach these performances with the first data
- The first physics results are presented in several talks at this conference:
 - First Physics results from LHCb by Sheldon Stone
 - PDF Sensitivity Studies using electroweak processes at LHCb by Ronan McNulty
 - Particle Production Studies at LHCb by Chris Blanks
 - Search for New Physics with Rare Heavy Flavour Decays at LHCb by Giovanni Passaleva
 - Results and prospects for Charm Physics by Vanya Belyaev
 - Studies of charmed hadronic B decays with early LHCb data and prospects for gamma measurements by Susan Haines
 - Prospects for CP measurements with charmless hadronic B decays at LHCb gamma measurement by Ignacio Bediaga
 - Prospects for CP violation in $BO_s \rightarrow J/psi$ phi from first LHCb data by Gerhard Raven
 - Search for New Physics with Rare Heavy Flavour Decays at LHCb by Giampiero Mancinelli