

Search for the Higgs boson in the $\gamma\gamma$ final state at the Tevatron

Krisztian Peters University of Manchester

On behalf of the CDF and DØ collaborations

23rd July 2010 35th Int. Conf. on High Energy Physics, Paris

Stalking the Higgs

If the SM is correct, a light Higgs boson is around the corner!

Investigate different production mechanisms and a large number of final states to scan the whole mass range allowed at the Tevatron

Krisztian Peters

$H \rightarrow \gamma \gamma$ at the Tevatron 2

Why search for $H \rightarrow \gamma \gamma$ at the Tevatron?

Within the SM, small BR (~0.2%) results in very small production rate \Rightarrow Compensate with much better mass resolution compared to dijet final states

 $H\to\gamma\gamma$ provides important additional sensitivity especially in the difficult intermediate mass region ~130 GeV

Forerunner to similar search at the LHC

Why search for $H \rightarrow \gamma \gamma$ at the Tevatron?

Beyond the SM, significant enhancements to the production rate possible:

- New particles affecting the loop-mediated Hgg or Hyy couplings
- Increased BR(H $\rightarrow\gamma\gamma$) in models with modified Higgs couplings to fermions
- Fermiophobic example: suppressed couplings to all fermions

Fermiophobic models can be probed with $H \rightarrow \gamma \gamma$ at the Tevatron

In general, this search can probe for any narrow resonance decaying into di-photons in a quasi-model independent way

$H \rightarrow \gamma \gamma$ search at the Tevatron

Perform search as model-independent as possible

- Inclusive event selection
- Use only di-photon mass observable, look for bump in deeply falling spectrum
- Signal acceptance/sensitivity basically independent of production mechanism

For the Standard Model Higgs:

Add ~30% more signal

Relevant aspects for this search:

- Calorimeter resolution
- Photon identification
- Background model (data driven techniques)

CDF and DØ calorimeters

- Central/Wall ($|\eta|$ <1.2) and Plug calorimeters
 - Scintillating tile with lead as absorber material in EM section
 - Coarse granularity: ~800 towers
 - Nearly no noise
 - EM resolution:
 σ/E = 13.5% / √E ⊕ 1.5%
 (in central)

Central ($|\eta|$ <1.1) and forward calorimeters

- Liquid Argon with mostly uranium as absorber
- Fine granularity: ~50K cells
- EM resolution: σ/E= 21% / √E ⊕ 2.0 % (at normal incidence)

Both calorimeters calibrated regularly with special triggered data

Photon energy scale and resolution

DØ example: the presence of additional dead material (non-uniformly distributed) with the Run II upgrade leads to:

- Shower maximum in frontal CAL layers
- Significant dependence of EM response and resolution on the particle energy and incident angle
- Different energy-loss corrections between electrons and photons

Energy-loss corrections measured in $Z \rightarrow ee$ events. Propagated to different energy scales and photons with tuned GEANT simulation

Systematic uncertainties:

- Energy scale: ±0.5%
- Energy resolution: ±5% in constant term

$H \rightarrow \gamma \gamma$ at the Tevatron

Krisztian Peters

Photon identification: basic selection

- Both experiments select photons from EM clusters with the following criteria:
 - High EM fraction / cluster in shower maximum detector
 - Isolated in the calorimeter
 - Isolated in the tracker
 - Transverse shower profile consistent with EM object
 - No associated track / no pattern of hits consistent with electrons
- Differences between data and simulation calibrated using photons from radiative Z decays (Z \rightarrow II γ) and Z \rightarrow ee

q

$H \rightarrow \gamma \gamma$ at the Tevatron 8

Photon identification: Neural Network

DØ: Further improve photon purity with a five variable NN

Trained using QCD $\gamma\gamma$ and di-jet MC. Performance verified with Z \rightarrow II γ data events - excellent agreement between data and MC

Require NN>0.1 (almost 100% efficient for photons while rejecting 50% misidentified jets)

Event selection

Data collected with a suite of calorimeter only triggers:

- Di-EM triggers (pT thresholds vary within 12-25 GeV)
- Single photon triggers with high p_T threshold 50/70 GeV (CDF only)
- Trigger efficiency after offline selection ~100%

Require primary vertex within the acceptance of the tracking detectors

Two photons candidates:

- In central calorimeters (away from module boundaries)
- p_T > 15 / 25 GeV (CDF / DØ)
- Mγγ > 30 / 60 GeV (CDF / DØ)

Main backgrounds

- Reducible backgrounds:
- Electrons misidentified as photons: $Z/\gamma^* \rightarrow ee$ Estimated using MC normalized to NNLO theoretical cross section
- Jets misidentified as photons: di-jet and γ +jet Normalization and shape estimated from data
- Irreducible background:
- Direct QCD di-photon production Normalization and shape estimated from data using sideband fitting method

In the CDF analysis the sum of all backgrounds is taken from an inclusive sideband fitting method

q q q

e+

q

Di-jet / y+jet background modeling

4x4 Matrix Method:

Use efficiency of a tighter cut (NN>0.75) to classify the events in 4 categories

Both photons fail

Leading fail, trailing passes Leading passes, trailing fails Both photons pass

Solve linear equation with photon and jet efficiencies to obtain Njj+N γ j+Nj γ

Inverse-NN Method:

Invert NN (0.1) cut for one photon candidate to obtain enriched non- $\gamma\gamma$ sample from data

Di-jet / y+jet background modeling

4x4 Matrix Method: For normalization Use efficiency of a tighter cut (NN>0.75) to classify the events in 4 categories

Both photons fail

Leading fail, trailing passes Leading passes, trailing fails Both photons pass

Solve linear equation with photon and jet efficiencies to obtain Njj+N γ j+Nj γ

Inverse-NN Method: For shape Invert NN (0.1) cut for one photon candidate to obtain enriched non- $\gamma\gamma$ sample from data

Direct di-photon production

Challenging to predict theoretically. Estimated from sideband fitting in data after subtraction of the reducible backgrounds

Fitting range is [70,200] GeV, excluding the signal region, defined to be interval $m_{\rm H}\pm 15~GeV$

Choice of fitting function validated on PYTHIA reweighted to DIPHOX (NLO)

$$f(M_{diem}) = \exp(p_0 \cdot M_{diem}^2 + p_1 \cdot M_{diem} + p_2)$$

Systematic uncertainties

Systematic uncertainties affecting the normalization and shape of the $M\gamma\gamma$ spectrum are estimated for both signal and backgrounds

source	uncertainty
luminosity	6.1%
trigger	0.1%
PDF for $h \to \gamma \gamma$ acceptance	1.7% - $2.2%$
electron misidentification efficiency	19.0%
$Z/\gamma^*(ee)$ cross section	3.9%
photon identification efficiency	6.8%
background subtraction	shape
photon energy scale	shape

Systematic uncertainties have small effect of limits, final sensitivity completely driven by statistics

SM Higgs limits

The M $\gamma\gamma$ spectrum in the search region is used to derive limits, which are a factor of ~20 above the SM expectation for m_H = 100 ~ 140 GeV

Krisztian Peters

Fermiophobic Higgs limits

Large enhancement to BR(H $\rightarrow\gamma\gamma$)

Gluon-fusion mechanism absent. Significant Higgs recoil in VH and VBF production

Similar to SM analysis, but require large di-photon p_T : $p_T(\gamma\gamma) > 75 / 35 \text{ GeV} (CDF / DØ)$

Within Fermiophobic scenario, exclude m_H >106 GeV

Probing BR beyond kinematic reach of LEP

Conclusions

SM Higgs:

Due to the good mass resolution for di-photons, $H \rightarrow \gamma \gamma$ search adds ~5% sensitivity to Tevatron's SM Higgs combination

- Especially important for the difficult intermediate mass region ~130 GeV
- Expect main improvements from multivariate analysis
 - Di-photon differential cross-section measurements at the Tevatron tell how well the theory works and how to reweight the MC
- Fermiophobic Higgs:
- Both Tevatron experiments have better sensitivity than any single LEP experiment
 - Next round of results likely to exceed combined LEP result

Limits on BR(H $\rightarrow \gamma\gamma$) probing new territory beyond kinematic reach of LEP

