Beyond Standard Model Higgs Searches at the Tevatron

presented by

Abid Patwa
Brookhaven National Laboratory, USA

on behalf of the CDF and DØ Collaborations

35th International Conference on High Energy Physics

July 22 − 28, 2010 ◆ ICHEP '10

Paris, France

BSM Higgs: Outline

Several extensions to SM predict additional Higgs bosons

- behave similar to SM Higgs, but exhibit different couplings
- branching ratio of various Higgs decays can be enhanced significantly

. MSSM Higgs Search

- 5 physical Higgs bosons
 - * $\phi (= h^0, H^0, A^0)$ and H^{\pm}
- main searches
 - * $\phi b \rightarrow b\bar{b}b$
 - * $\phi \rightarrow \tau\tau$ and $\phi b \rightarrow \tau\tau b$
 - * charged Higgs in top decays

II. next-to-MSSM Higgs (NMSSM)

- neutral CP-even Higgs boson (h_{1,2,3})
- neutral CP-odd Higgs boson (a_{1,2})
- charged Higgs pair (h[±])

III. Fermiophobic Higgs Search

not covered here... see talk byK. Peters, this conference

Higgs bosons in the MSSM

- * MSSM Higgs requires 2 doublets
 - yields: ϕ (= h⁰, H⁰, A⁰) and H[±]
- At tree-level, MSSM Higgs fully specified by two free parameters
 - m_A
 - $tan\beta = \langle H_u \rangle / \langle H_d \rangle$ (ratio of v.e.v. of 2 Higgs doublets)
- Radiative corrections introduce dependence on additional SUSY parameters
- * Inclusive production cross section $\sigma(p\bar{p} \rightarrow h/H/A)$ is enhanced
 - enhancement depends on tanβ
- h/H/A decays, in most parameter space:
 - $\bullet \quad \phi \rightarrow b\overline{b} \quad (\sim 90\%)$
 - - * smaller BR but cleaner signature (vs. large QCD background in b mode)

CDF: $\phi \rightarrow \tau \tau$ **Search**

- * CDF considers $\tau_{\mu}\tau_{had}$, $\tau_{e}\tau_{had}$, and $\tau_{e}\tau_{\mu}$ channels with 1.8 fb⁻¹ data, selected by:
 - isolated e or μ : opposite-sign (OS) from hadronic τ
 - τ 's selected using variable-size cone algorithm
 - Suppress W+jets background by requirement on relative direction of visible τ decay products and ∉_T

- Data agrees with backgrounds for visible mass
 - set $\sigma \times BR$ limits for 90 GeV < m_A < 250 GeV

CDF: PRL 103, 201801 (2009)

DØ: Inclusive ττ Search

- * Result using I.0 fb⁻¹ dataset for $\tau_{\mu}\tau_{had}$, $\tau_{\rm e}\tau_{\rm had}$, and $\tau_{\rm e}\tau_{\rm u}$: PRL 101, 071804 (2008)
- * 2.2 fb⁻¹ of Run II data considers τ_μτ_{had}
 - isolated μ separated from τ : opposite-sign
 - hadronic τ categorized by decay types * discriminated from jets using τ -ID NN
 - $M_T < 40 \text{ GeV} \Rightarrow \text{reject W+jets}$

DØ Preliminary (1-2.2fb⁻¹)

- No excess in data across visible mass spectrum
 - upper limits on $\sigma \times BR$ as function of ϕ mass
 - * 2.2 fb⁻¹ result:
 - ~10 20% improvement over 1.0 fb⁻¹ search

A. Patwa: ICHEP 2010

$\phi \rightarrow \tau \tau$: DØ and CDF Combined Limits

• 95% CL exclusion results similar for each experiment

■ each reach sensitivity $tan\beta \sim 40-50$ for $m_A < 180$ GeV

Tevatron combination

• with only a fraction of available dataset, probing interesting region of $\tan \beta \sim 30 \ [\mathcal{O}(m_{top}/m_b)]$

Tevatron Combination

A. Patwa: ICHEP 2010

CDF: ϕ **b** \rightarrow **b** $\bar{\mathbf{b}}$ **b** Search

- - consider \(\phi \) produced in association with one b-jet
- * [updated] 2.2 fb⁻¹ data with 3 b-tagged jets
- Model multijet backgrounds using dijet mass of 2 lead jets (m₁₂) & flavor separator (x_{tags})
 - search for enhancements in m₁₂

CDF: $\phi b \rightarrow b\bar{b}b$ Search (cont.)

95% C.L. Mass-Dependent Cross Section Limits and MSSM Exclusions

* Limits on $\sigma \times BR$

- positive deviation at ~140 GeV for narrow-width case, with p-value = 0.9% (trial factors, 5.7% probability to observe such an excess at any masses)
- general limits applicable to any narrow scalar with bb final states
 produced in association with b-jet

Translate limits in MSSM benchmark scenarios in (m_A, tanβ) parameter space

 large tanβ ⇒ enhances the bbH coupling as well as increases width of the Higgs

DØ: **\phi b** → **b**\bar{b} b Search

- 2.6 fb⁻¹ search requires 3 b-tagged jets via NN b-tagger
- Improve sensitivity by separating into 3- and 4-jet channels
 - likelihood discriminates b-jet pair via
 Higgs signal from multijet backgrounds
 * separate low-mass (<130 GeV) and high-mass (>130 GeV) likelihoods
 - analysis relies on shape difference between signal & background
 use double b-tagged data to predict triple b-tagged background shape
- No excess in dijet invariant mass: set exclusion limits in MSSM benchmark parameter space
 - Higgs mass term, μ < 0 \Rightarrow enhanced production for 3b mode gives strongest limits

$\phi \mathbf{b} \rightarrow \tau_{\mu} \tau_{had} \mathbf{b}$ Search

- **♦** [updated] 4.3 fb⁻¹ search considers $\phi \mathbf{b} \rightarrow \tau_{\mu} \tau_{had} \mathbf{b}$
 - use developed techniques from both $\phi \rightarrow \tau \tau$ and $\phi b \rightarrow b \bar{b} b$ searches
 - 2.7 fb⁻¹ dataset result: PRL 104, 151801 (2010)
- * Discriminate against different backgrounds via MVA techniques
 - NN based b-tagging algorithm of leading b-tag jet \Rightarrow suppress $Z \rightarrow \tau\tau$ (Z+jets)
 - construct tt and QCD multijet discriminants per Higgs mass point

 Take geometrical mean of top, multijet, and b-tag discriminants for final discriminant, D_f

A. Patwa: ICHEP 2010 10

$\phi \mathbf{b} \rightarrow \tau_{\mu} \tau_{had} \mathbf{b}$ Search (cont.)

- 95% C.L. mass-dependent limits calculated for $\sigma \times$ BR
- * Translate into MSSM exclusions in $tan\beta$ vs. m_{Δ} space

Search complimentary to $\phi \rightarrow \tau \tau$ channel as it does not suffer from $Z \rightarrow \tau \tau$ background

A. Patwa: ICHEP 2010 11

MSSM Charged Higgs Search

♦ If $m_{H^{\pm}} < m_{top}$: search in top pair sample for decay to H^{\pm}

- **Consider two search modes based on H**[±] decays
 - Tauonic model: $H^{\pm} \rightarrow \tau \nu$ (high tanβ)
 - Leptophobic model: $H^{\pm} \rightarrow c\bar{s}$ (low tan β)
- **Search dilepton,** ℓ +jets, ℓ + τ top channels
- ♦ Select high- p_T leptons, E_T , and b-tag
- ♦ 95% CL limits on BR(t→H+b)
 - DØ I.0 fb⁻¹: PLB 682, 278 (2009)
 - CDF 2.2 fb⁻¹: PRL 103, 101803 (2009)

DØ: NMSSM h→aa Search

* next-to-MSSM Higgs decay search, 4.2 fb⁻¹ data

■ h \rightarrow bb branching ratio greatly reduced and dominantly decays to pair of pseudo-scalar Higgs "a": h \rightarrow aa

■ general LEP search sets limit: M_h > 82 GeV

For masses: $2m_u < M_a < \sim 2m_\tau$ (~3.6 GeV)

♦ dominant decay: aa → μμμμ

- signature: two pairs of extremely collinear muons due to low M_a
- $\sigma \times BR$ limits < 5–10 fb (for $M_h = 100$ GeV)
- BR($a \rightarrow \mu\mu$) < 7%, assuming BR($h \rightarrow aa$) ~1

For masses: $2m_{\tau} < M_a < 2m_b$ (~9 GeV)

♦ dominant decay: $aa \rightarrow 2\mu 2\tau$

- signature: one pair of collinear muons and large $\not\!\!E_T$ from a $\rightarrow \tau\tau$ decay
- $\sigma \times BR$ limits: currently are factor of $\approx 1-4$ larger than expected Higgs production

PRL, 103 06 180 I (2009)

μμ-pair

CDF: Charged Higgs Search in NMSSM

- * next-to-MSSM Higgs decay search, 2.7 fb⁻¹ data
 - search in top quark decays: $t \rightarrow H^{\pm}b \rightarrow W^{\pm}Ab \rightarrow W^{\pm}\tau\tau b$
 - if charged Higgs ~ 100 GeV exists \Rightarrow BR(t \rightarrow H[±]b) ~ 10-40%
- Search assumes mass of light pseudo-scalar Higgs (A) < 2m_b
 - region not experimentally excluded
 - select low- p_T isolated tracks created by τ decay
- Data in signal region agrees with expectations, set 95% CL limits for various H[±] and A masses

CP-odd neutral Higgs

 $m_A < 2m_h$

SM W-boson

Higgs

~I00 GeV

b

SM top

First such limits in the parameter space of top quark decays

Prospects and Conclusions

CDF and DØ actively searching for Higgs in models beyond SM

results with up to 4.3 fb-1 of data reported here

MSSM Higgs

- Tevatron reaching sensitivity of $tan\beta \sim 30$ for low m_A
- forthcoming searches with larger datasets should provide further insight into deviations from expectation at low m_A
- updated results with new combination expected soon
- ❖ SM Higgs searches (for e.g., H→WW)
 could be used to constrain the
 SM-like Higgs in MSSM
 - see P. Draper et al., arXiv:0905.4721v2
 - potential to probe significant regions of MSSM parameter space

Tevatron delivered > 9 fb⁻¹ of data and more coming... Stay tuned for exciting results ahead!

Reference Slides

τ-Identification

narrow cal clusters matched to low multiplicity tracks

- define [shrinking] signal and isolation cones around seed track's axis (\equiv highest p_T track; > 6 GeV)
- # of tracks inside signal cone defines τ decay mode
- add π^o info to track-cal cluster ⇒
 consistent with τ mass
- τ -id based on "cuts" to key variables (e.g., sum of isolation E_T , p_T tracks inside cone)

narrow call energy clusters matched to tracks, with or without EM subclusters \Rightarrow separate τ 's into 3 categories, defined by their decay mode

- πv -like [type I], ρv -like [type 2], and 3-prongs [type 3]
- implement Neural Nets (NN) per τ -type to discriminate τ signal from multijet background

Visible Mass

- * After final event selections for $\phi \rightarrow \tau \tau$, irreducible background from $Z \rightarrow \tau \tau$
 - smaller contribution from EW and QCD multijet processes
- Distinguish Higgs boson by its mass
 - presence of neutrinos in final states \Rightarrow not possible to reconstruct $\tau\tau$ mass
 - use visible mass: the invariant mass of the sum of the τ decay plus missing transverse energies
 - * exploit fact that signal appears as an enhancement above $Z \rightarrow \tau \tau$

$$M_{VIS} = \sqrt{(P^{\tau 1} + P^{\tau 2} + P_T)^2} \quad = \frac{\nabla}{2}$$

- Use 4-vectors of:
 - $P^{\tau I}$, $P^{\tau 2}$ of visible tau decay products
 - $\mathcal{P}_T = (\mathcal{E}_T, \mathcal{E}_x, \mathcal{E}_y, 0)$, where \mathcal{E}_x and \mathcal{E}_y indicate components of \mathcal{E}_T
- * M_{vis} used as input to $\sigma \times BR$ limit calculation

DØ: **b** → **b** bbb Analysis Overview

❖ 2.6 fb⁻¹ search requires

- separate into 3- and 4-jet channels: $p_T^{\text{jet}} > 20 \text{ GeV}$, $|\eta| < 2.5$
- 3 b-tagged jets with NN based b-tagger, with 2 jets in pair: $p_T^{\text{jet I},2} > 25 \text{ GeV}$

* 6-variable likelihood discriminant $[\mathcal{D}]$

(3 b-tag Sample)			
,)			
,)			
,)			

Background composition determined from 3-jet sample

fit MC simulated events to data over b-tagging points: 0-, I-, 2-, and 3-tag

Background modeling

- irreducible $b\bar{b}b$ background \Rightarrow indistinguishable from any possible signal
- no control regions to normalize to data
 - * model background shape using combination of data and simulation
 - * predict 3 b-tag bkgnd shape from 2 b-tag data, scaled by simulated 3/2-tag ratio

Multivariate Methods: Variables

h_f → γγ Search

5-variable Neural Network (NN)

 $\Sigma_{trks} p_T(trks)$

 N_{cells} in CAL Layer I within $\Delta R < 0.2$

 N_{cells} in CAL Layer I within $0.2 < \Delta R < 0.4$ number of assoc. CPS clusters with EM_{CAL} energy-weighted width of CPS clusters

φb → bb̄b Search

6-variable Likelihood Discriminant

(for jet pair with 1st and 2nd leading jets)

 $\Delta \eta$ of 2-jets in the pair

 $\Delta \phi$ of 2-jets in the pair

angle: $\phi = a\cos(\text{lead jet}, \text{total } p_T \text{ of jet pair})$

momentum balance: $|p_{bI}-p_{b2}|/|p_{bI}+p_{b2}|$

combined rapidity of jet pair

event sphericity

ϕ b → $τ_{\mu}$ $τ_{had}$ b Search

anti-top Discriminant (D _{top})	anti-multijet Discriminant (D _{MJ})		
$D_{final} = (D_{top} + D_{MJ} + D_{lead\ b-tag})^{1/3}$			
N_{jets}	Muon p_T		
$H_T = \Sigma_{jets} p_T[jets]$	Tau p _T		
$E_T = p_T^{T} + p_T^{u} + H_T$	$ \Delta \phi[\mu, \tau] $		
$ \Delta \phi[\mu, au] $	Δφ[μ , M ET]		
$ \Delta \phi[\mu, MET] $	$H_T = \Sigma_{jets} p_T[jets]$		
$\mathcal{A}_{T} = [p_{T}^{\mu} - p_{T}^{\tau}]/p_{T}^{\tau}$	$m_T[\mu, \tau, MET]$		
MET	$m_T[\mu, \tau, MET, jet]$		
$m_T[\mu, MET]$	-		
$m_T[\mu, \tau, MET]$	-		
$m_T[\mu, \tau, MET, jet]$	-		

N-object m_T defined by: $m_T[O_1,...,O_k,...,O_N] = \sqrt{\sum_{i=1}^{j \leq N} \sum_{i=1}^{j \leq N} p_T[O_i] \times p_T[O_j] \times \left(1 - \cos\Delta\varphi[O_i;O_k]\right)}$

MSSM Benchmark Scenarios

- ***** For neutral Higgs searches: $\sigma \times BR$ limits \Rightarrow interpreted in MSSM
- * Tree-level: Higgs sector of MSSM described by m_A & tanβ
 - radiative corrections introduce dependence on additional SUSY parameters
- * Five additional, relevant parameters
 - M_{SUSY} Common Scalar mass: parameterizes squark, gaugino masses
 - X_t Mixing Parameter: related to the trilinear coupling $a_t \rightarrow$ stop mixing
 - M₂ SU(2) gaugino mass term
 - μ Higgs mass parameter (where $\Delta_b \propto \mu \times \tan \beta$)
 - m_e gluino mass: comes in via loops

Two common benchmarks

- m_h^{max} (max-mixing): Higgs boson mass, m_h, close to maximum possible value for a given tanβ
- no-mixing: vanishing mixing in stop sector ⇒ small Higgs
 boson mass, m_h

Constrained Model:	Unification of SU(2)) and $U(1)$ gaugino masses
--------------------	----------------------	-----------------------------

	m _h ^{max}	no-mixing
M _{SUSY}	I TeV	2 TeV
X_{t}	2 TeV	0
M_2	200 GeV	200 GeV
μ	±200 GeV	±200 GeV
$m_{\widetilde{g}}$	800 GeV	1600 GeV

MSSM: DØ Combined Limits

* DØ combination across search channels \Rightarrow tan β vs. m_A exclusions

- $\phi \rightarrow \tau\tau$ (1.0-2.2 fb⁻¹), $\phi b \rightarrow \tau\tau b$ (1.2 fb⁻¹), and $\phi b \rightarrow b\bar{b}b$ (2.6 fb⁻¹)
- does not include recent 4.3 fb⁻¹ ϕ b $\rightarrow \tau \tau$ b search
 - * expect new combination soon

\star Reach similar sensitivity as Tevatron combination on $\tau\tau$ searches

DØ Combination with 3 Search Channels

Fermiophobic $h_f \rightarrow \gamma \gamma$ Search

- ❖ DØ 4.2 fb⁻¹ result
- Distinguish photons with misidentified jet backgrounds using NN
 - implement energy-weighted width of DØ central preshower clusters
- Search for excess of events in γγ mass spectrum

- ❖ For Fermiophobic couplings, limit set at 95% CL: m_{hf} > 102.5 GeV
- * CDF (3.0 fb⁻¹): $m_{hf} > 106 \text{ GeV}$
 - each result has reached similar sensitivity as a single LEP experiment
- * Tevatron results: extend sensitivity for $Br(h_f \rightarrow \gamma \gamma)$ into $m_{hf} > 125$ GeV region, not accessible by LEP