Search for the SM Higgs boson in the di-tau final state at Tevatron

Pierluigi Totaro

University of Trieste

On behalf of the

CDF and DØ collaborations

35th International Conference on High Energy Physics Paris, July 23rd 2010

Outline

- Standard Model Higgs production and decay at Tevatron
 - Low mass searches
- Motivation for $H \rightarrow \tau \tau$ searches
- Analysis strategies for CDF and DØ experiments
- Results: CDF 2.3 fb⁻¹ DØ 4.9 fb⁻¹
- Conclusions

Higgs production and decay at Tevatron

Primary production modes:

Principal decay modes:

H→**bb** for M_H <135 GeV/c² **H** → **WW*** for M_H >135 GeV/c²

Low Mass Higgs searches at Tevatron

Low mass Higgs $(M_H < 135 \text{ GeV/c}^2)$

- 1) gg→H→bb
- 2) WH \rightarrow Ivbb,ZH \rightarrow Ilbb, ZH \rightarrow vvbb

Very hard: overwhelmed by multijet background good event selection handles: lepton and b-quark tagging

Low branching fraction but

more unique event signature

H→ττ searches: motivation

 $H \rightarrow \tau \tau$ branching ratio is small(<10%)

BUT

- 1)Different channels can be studied simultaneously
- 2)Direct production and VBF become accessible
- 3)Hadronic W/Z decays in the associated production can be included

$H \rightarrow \tau \tau$ searches: motivation

 $H \rightarrow \tau \tau$ branching ratio is small(<10%)

BUT

- 1)Different channels can be studied simultaneously
- 2)Direct production and VBF become accessible
- 3)Hadronic W/Z decays in the associated production can be included

What about tau leptons?

- Heavy particles: 1.78 GeV/c²
- Short lived: mean lifetime 291 ps ($c\tau$ =87 μ m) Detectable only through their decay products
- Decay modes:

$$\begin{array}{c|c}
-\tau \rightarrow v_{\tau} v_{e} e \text{ (B.R.} \sim 17\%) \\
-\tau \rightarrow v_{\tau} v_{\mu} \mu \text{ (B.R.} \sim 17\%) \\
-\tau \rightarrow v_{\tau} X_{h} \text{ (B.R.} \sim 65\%)
\end{array}$$

Look for isolated electrons or muons

Hadronic decays:

1-prongs
$$\tau^{\pm} \rightarrow \nu_{\tau} + h^{\pm} + N(\pi^{0})$$

3-prongs $\tau^{\pm} \rightarrow \nu_{\tau} + h^{\pm} h^{\pm} h^{\pm} + N(\pi^{0})$

- Di-tau decay combinations:
 - Hadronic+hadronic: 42 % large multijet background 41% τ_hτ_h
 - Leptonic+hadronic: 46 % golden channel
 - ee/μμ: 6 % large irreducible Drell-Yan background
 - eμ/μe: 6% clean signature but less events

Hadronic tau identification

Very challenging task

The signature: narrow calorimeter clusters with low

track multiplicities

quark/gluon jets can easily lead to fakes

Reconstruction: - very difficult due to undetected neutrinos

- Cluster tau decay hadrons in cones

Identification (ID):

based on calorimeter and track isolation requirements

- <u>Multivariate selections</u> are better than rectangular cuts to exploit correlations and provide a good τ -jet separation:

D0: Neural Networks (NN)

CDF: Boosted Decision Trees (BDTs)

- best performances achieved by considering different tau decay modes separately

Hadronic tau identification

Hadronic tau identification

Strategies for the analysis

SIGNATURE SEARCH: similar approaches for CDF and DØ

- looking for leptonic+hadronic di-tau decay modes.
- jets in the final state optimize sensitivity for $qqH \rightarrow qq\tau\tau$, WH $\rightarrow qq\tau\tau$ and ZH \rightarrow qq $\tau\tau$. gg \rightarrow H events with jets from initial state radiation (ISR) are also included

One isolated lepton (e/μ)

 $p_T > 10 \text{ GeV/c}$ $p_{TVIS} > 15 \text{ GeV/c}$

One hadronic tau

Opposite charges

≥1calorimeter jet:

- $-E_{\tau} > 20 \text{ GeV}$
- pseudorapidity: $|\eta| < 2.5$

One isolated muon

 $p_T > 15 \text{ GeV/c}$

One 1(3)-prong had. tau $p_{TVIS}>15(20)$ GeV/c

Opposite charges

≥2calorimeter jets:

- $-E_{T} > 20 \text{ GeV}$
- pseudorapidity: $|\eta| < 3.4$

Strategies for the analysis 2

BACKGROUND ESTIMATION

IRREDUCIBLE PHYSICS CONTRIBUTIONS

Z→ττ, top-antitop, dibosons : from MC

BACKGROUND FROM MISIDENTIFIED LEPTONS

W+jets, γ+ jet,multijet: based on MC and data driven techniques

THE CHALLENGE: evaluate jet $\rightarrow \tau$ fake rate.

To estimate multijet bkg, both CDF and DØ use same-sign (SS) data:

jet \rightarrow e/ μ Little or no correlation is jet $\rightarrow \tau$ expected between charges

⁹ From high-isolation sidebands control regions:

- Normalization factors for SS ~ 1

ICHEP, Paris, July 23rd 2010

- Corrections for W+jets OS/SS asymmetries

0-jet control region: background testing

Z → ττ control region: tau ID testing

BDT-based tau ID variables

Signal channel: ≥ 2 jets

Data Σ Bknd $t\bar{t}$ W+jets Z+jets diboson multijet ≥ 2 jets 433 439.9 66.7 81.5 222.7 10.2 80.7

Main background contributions:

- $-Z \rightarrow \tau \tau$
- -jet $\rightarrow \tau$ fakes in multijet and W+jets

Process	ZH	HZ	HW	VBF	GGF
Event yield	0.11	0.23	0.72	0.12	0.15

- Signal yield: 1.33
- Included also $Z(\rightarrow \tau\tau)H(\rightarrow qq)$

VBF: Higgs from Vector Boson Fusion

Signal channels: 1 jet & ≥ 2 jets

	Data	Σ Bknd	$tar{t}$	$Z \rightarrow \tau \tau$	$Z \rightarrow ll$	diboson	$jet \rightarrow \tau \text{ fakes}$
1 jet	965	921.7	4.6	357.9	26.4	3.9	528.8
≥ 2 jets	166	159.4	16.3	59.3	4.8	0.9	78.1

Main background contributions:

- $-Z \rightarrow \tau \tau$
- -jet $\rightarrow \tau$ fakes in multijet and W+jets

	HZ	$_{\mathrm{HW}}$	VBF	GGF
1 jet	0.050	0.091	0.070	0.535
≥ 2 jets	0.099	0.150	0.099	0.129

- Signal yield: 1 jet: 0.746

≥2 jets: 0.477

Systematic uncertainties

This search relies on a good jet multiplicity modeling.

Main source of systematics for MC-derived processes:

Jet Energy Scale (JES)

Other sources of uncertainty taken into account are:

- Cross section and MC acceptances
- Parton Distribution Function (PDF) modeling
- W+JETS and QCD multijet modeling
- Initial State Radiation (ISR)
- Final State Radiation (FSR)
- Tau ID scale factors

Signal vs. Background discrimination

- · Good agreement in almost all kinematic distributions
- Expected signal is much smaller than background uncertainties
- S/B is small \rightarrow counting experiment is not possible.
- Need to exploit all the event information to extract S from B
 Multivariate techniques combine the discriminating power of different kinematical and topological distributions

Multivariate discriminants

Final discriminant: BDT(signal vs. $Z \rightarrow \tau \tau$)

BDT(signal vs. top)

Multivariate discriminants

Results: 95% C.L. upper limit

Mass ranges explored:

 $100 - 150 \text{ GeV/c}^2$

CDF Expected limits x SM: 23.4 – 82.6

CDF Observed limits x SM: 25.3 – 70.0

Mass ranges explored: 105 – 145 GeV/c²

DØ Expected limits x SM: 13.4 - 61.4

DØ Observed limits x SM: 21.9 - 86.0

Summary

- Latest results for SM $H \rightarrow \tau \tau$ search at Tevatron presented
 - complementary channel for the low mass region

```
CDF: 2.3 fb<sup>-1</sup> exp.(obs.) limit @ M_H = 115 \text{ GeV/c}^2 \qquad 24.5(27.9) \text{ x SM}
```

DØ: 4.9 fb⁻¹ exp.(obs.) limit @
$$M_H = 115 \text{ GeV/c}^2$$
 15.9(27.0) x SM

- Many improvements beyond luminosity scaling
 - new tau identification algorithms
 - increased acceptances
 - more sophisticated multivariate method
- Now working to add more data and get further improvements!

BACK-UP SLIDES

The Tevatron

- 1 Km radius superconducting sincrotron
- Proton-antiproton collisions at 1.96 TeV
- Two detectors at interaction points: CDF and DØ

- peak luminosity 4 X 10³² cm⁻²s⁻¹;
- weakly integrated lum. ~60 pb⁻¹;
- -8.8 fb⁻¹ delivered per experiment (7.4 fb⁻¹ on tape)

Chicago

CDF and DØ detectors

- Silicon Tracking $|\eta| < 2-2.5$
- Drift cell Tracker 1.4 T, $|\eta|$ < 1.1
- Scintillator Cal. $|\eta| < 3.2$
- Muons: |η|<1.5

- Silicon tracking $|\eta| < 3$
- Fiber tracker 1.9 T, $|\eta|$ <1.7
- LAr/DU calor. |n|<4
- Muons: $|\eta| < 2$

The Boosted Decision Tree method

A DECISION TREE: a sequence of rooted binary splits

Ingredients: 1) a <u>training sample</u> for signal and background
2) a set of <u>discriminating</u> variables

At the end of a splitting, leaves are classified as signal-like (event score +1) or background-like (event score -1), accordingly to the purity.

BOOSTING: N trees are created. Events misclassified in the N-th tree, are given an <u>increased weight</u> in the (N+1)th tree.

An event final score is given by the weighted average of different tree outputs

DØ: systematic uncertainties

Source	Uncertainty (%)
Luminosity	6.1
μ ID, track match, iso.	5.0
trigger	5.0
W/Z+light flavor XS	6.0
W/Z+heavy flavor XS	20.0
$t\bar{t}$, single top XS	10.0
diboson XS	7.0
Higgs boson XS	6.0
τ ID NN	8.9
Jet ID/reco eff.	3.0
Jet E resolution.	5.0
JES	7.5
jet p_T	10.0
pdfweight	Shape (currently 3.0)
MJ estimation	17

CDF: systematic uncertainties for background

Systematic uncertainties for the background (%)						
Source		$Z/\rightarrow ll$	$t\overline{t}$	diboson	fakes from SS	W+jets
JES	(0 jet)	-0.6	-19.0	-0.9		
	(1 jet)	+6.2	-7.7	+7.1		
	$(\geq 2 \text{ jets})$	+14.2	+3.2	+11.7		
Cross section		+2.2	+10.0	+6.0		
PDF		+1.0	+1.0	+1.0		
SS data					+10.0	
W+jets scale	(0 jet)					+5.0
	(1 jet)					+18.0
	$(\geq 2 \text{ jets})$					+30.0
Acc.(DY)		+2.3				
tau ID SF:						
$N_{ m obs}$		+2.8	+2.8	+2.8		
$N_{ m SSdata}$		-3.3	-3.3	-3.3		
$N_{ m W+jets}$		-0.3	-0.3	-0.3		
cross section(DY)		-2.1	-2.1	-2.1		
Acc.(DY)		-2.2	-2.2	-2.2		

CDF: systematic uncertainties for signal

Systematic uncertainties for the signal
1 jet and ≥ 2 jet channels

Source		ggH	WH	ZH	VBF
JES	(1 jet)	+5.1	-4.8	-5.3	-3.7
	$(\geq 2 \text{ jets})$	+13.2	5.4	+4.8	-5.2
cross section	(1 jet)	+23.5	+5.0	+5.0	+10.0
	$(\geq 2 \text{ jets})$	+67.5	+5.0	+5.0	+10.0
PDF		+4.9	+1.2	+0.9	+2.2
ISR	(1 jet)	+13.0	-6.1	-1.7	-2.9
	$(\geq 2 \text{ jets})$	+15.5	-1.5	+0.1	-2.7
FSR	(1 jet)	-5.0	+4.3	+1.0	+1.7
	$(\geq 2 \text{ jets})$	-5.2	-2.1	+0.4	-1.1
tau ID SF:					
$N_{ m obs}$		+2.8	+2.8	+2.8	+2.8
$N_{ m SSdata}$		-3.3	-3.3	-3.3	-3.3
$N_{\mathrm{W+jets}}$		-0.3	-0.3	-0.3	-0.3
cross section(DY)		-2.1	-2.1	-2.1	-2.1
Acc.(DY)		-2.2	-2.2	-2.2	-2.2