

"ICHEP 2010 ", Paris, 22-28 July

Yoshikazu Nagai

(University of Tsukuba)

on behalf of the CDF Collaboration

- Introduction
- Higgs Production and Decay
- Search Strategy
- Results from Low Mass Higgs Boson Searches
- Summary

MISSING PARTICLE:

Name: Higgs boson Age: 13.7 billion years Missing: 45 years Birthday: Every few days at Fermilab Favorite trait: Mass

Favorite particle: top quark Favorite Hangout: Tevatron

Motivation

The Higgs boson is the only undiscovered

"elementary" particle in the Standard Model Its discovery will help answer the questions:

- How do fermions/weak bosons acquire mass?
- How EW symmetry is broken?

The SM can not predict the Higgs boson mass

Needs to be determined by experiment !!

Status of SM Higgs Search

Current constraint on the SM Higgs boson

Precision electroweak measurements

(top mass, W mass, etc) $M_{H} = 89^{+35}_{-26} GeV/c^{2} M_{H} < 158 GeV/c^{2}$ (LEP EWG 2010, <u>http://lepewwg.web.cern.ch/LEPEWWG/</u>

Tevatron covers whole mass region

ICHEP 2010, July 22

Tevatron and CDF

Tevatron

- Proton-antiproton collisions at $\sqrt{S} = 1.96 \text{TeV}$
- > 9.0 fb⁻¹ delivered

CDF

- One of the general purpose detectors
- Currently, CDF has recorded > 7.5 fb⁻¹ of data.

EM calorimeter Hadron calorimeter

Solenoid

р

Tracking Chamber

Silicon Tracker

Muon Detectors

Fermilab

Main Injector

& Recycler

Tevatron

ICHEP 2010, July 22

Higgs Production @ Tevatron

Dominant SM Higgs production channels at

the Tevatron

ICHEP 2010, July 22

Event Reconstruction

High p_{τ} Lepton

- Existence of lepton(s) greatly suppresses QCD multi-jet background.
- Extended lepton coverage helps to maximize signal acceptance
- ZH -> llbb, WH -> lvbb
- Large Missing Transverse Energy (MET)
 - Requiring large MET also greatly suppresses QCD multi-jet background.
 - ZH -> vvbb, WH -> Ivbb
- b-flavor jets
 - B-hadrons have relatively long life time.
 - Identifying b-jets greatly enhance S/B.
 - Three main algorithms used in CDF:

SECVTX: Find secondary vertices displaced from the interaction point.

JETPROB: Identify b-jets using impact parameter of tracks in jets.

NN: Combine multiple jet variables to exploit b-jet properties. ICHEP 2010, July 22
Y. NAGAI (Univ. of Tsukuba)

Multivariate Analysis (NN,ME)

Employ advanced multivariate techniques to further improve

signal vs background separation

Neural Network **Combine multiple** kinematic variables

Calculate event probability using

the LO matrix elements

 $P(p_l, p_{jet}) = \frac{1}{\sigma} \int d\rho_{jet} dp_v \sum \phi_4 \left[M(p_i)^2 \right]$

Transfer Function (detector response)

 $W_{jet}(E_{parton}, E_{jet})$

PDF

 $f(q_1)f(q_2)$

 $|q_1||q_2$

ME

WH->Ivbb (NN)

Event Selection

One high- p_{τ} lepton (e, μ , isolated track) + large

MET + 2 high-E_T jets

• Isolated tracks recover lost acceptance from limited muon detector coverage and e/τ reconstruction inefficiencies

Analysis techniques

- NN b-jet energy correction to improve σ(m_{jj})
- Four b-tagging categories using SECVTX, JETPROB, NN to maximize sensitivity

Bayesian Neural Network as discriminant

Expected upper limit

3.5 x σ(SM) (@115 GeV)

Observed upper limit

4.5 x σ(SM) (@115 GeV)

Y. NAGAI (Univ. of Tsukuba)

ZH->vvbb & WH->\vbb

Event Selection

large MET + 2 high-E_T jets

Include WH->(I)vbb and ZH->(II)bb

Analysis techniques

- First NN to remove huge QCD multijet background
- Three b-tagging categories (SECVTX and JETPROB)
- Jet energy resolution improvement by combining tracking and calorimeter information
- Second Neural Network for final discriminant

Y. NAGAI (Univ. of Tsukuba)

ZH->IIbb

Event Selection

Two high- p_T leptons (ee, $\mu\mu$), m(ll) within Z boson mass window + 2 high- E_T jets

Analysis techniques

- NN to correct jet energies based on observed missing E_T
- Three b-tagging categories (SECVTX and JETPROB)
- Recover loose muon pairs using NN selection (first use of multivariate lepton ID in a low-mass analysis)
- 2-D Neural Network as discriminant (ZH vs top-pair, ZH vs Z+jets)

VH->jjbb & VBF H->bb

Event Selection

4 or 5 high-E_T jets

 W^{*}/Z^{*}

W/Z

W/Z

ICHEP 2010, July 22

Signal from WH/ZH and VBF processes.

Analysis techniques

- Two b-tagging categories (SECVTX and JETPROB)
- Data-driven QCD background estimation
- Use jet shape of quarks/gluons to remove gluon background
- Neural Network as discriminant

Expected upper limit 17.8 x σ (SM) (@115 GeV) Observed upper limit 9.1 x σ (SM) (@115 GeV)

Summary

We have performed searches for the low mass SM Higgs boson at CDF using multiple channels

CDF Higgs search sensitivity is now close to the SM prediction, we have a chance to find evidence of the Higgs in the low mass region if it exists there.

We have achieved **3.5 x σ(SM)** @ **115 GeV/c²** sensitivity in the best single low mass channel (*WH -> I vbb*)

For CDF combined SM Higgs limit, see K. Potamianos's talk on July 23 For Tevatron combined limit, see B. Kilminster's talk on July 26

14

Thank you!!

ICHEP 2010, July 22

ICHEP 2010, July 22

WH->Ivbb (NN) Key plots

Observed (Expected) upper limit

9.3 (15.3) x σ(SM) (@115 GeV)

ZH->vvbb & WH->\vbb Key plots

ICHEP 2010, July 22

VH->jjbb & VBF H->bb Key Plots

