Di-boson production and limits on triple gauge boson couplings at the Tevatron ICHEP, July 2010

Thomas Phillips - Duke University For the CDF & D0 Collaborations

Diboson Final State

Wy Production

Wy Production

Generalized Zy Couplings

 $= ie \ \Gamma^{\alpha,\beta,\mu}_{V_1V_2V_2}(q_1,q_2,P)$

Form factor
$$\Lambda$$
:
 $h_i^V(\hat{s}) = \frac{h_{i0}^V}{(1 + \frac{\hat{s}}{\Lambda})^n}$

Z quadrupole moments:

 $Q_Z^e = \frac{2\sqrt{10e}}{m_\pi^2} h_1^Z$

$$\begin{split} & \text{Parameterization from G.J. Gounaris et al. PRD 62, 073012.} \\ & \Gamma_{Z\gamma V}^{\alpha\beta\mu}(q_1, q_2, P) = \frac{i(s - m_V^2)}{m_Z^2} \{h_1^V(q_2^\mu g^{\alpha\beta} - q_2^\alpha g^{\mu\beta}) + \frac{h_2^V}{m_Z^2} P^\alpha[(Pq_2)g^{\mu\beta} - q_2^\mu P^\beta] \\ & -h_3^V \epsilon^{\mu\alpha\beta\rho}q_{2\rho} - \frac{h_4^V}{m_Z^2} P^\alpha \epsilon^{\mu\beta\rho\sigma}P_\rho q_{2\sigma}\}, \end{split}$$

Physical Quantities

CP Conserving: $\rightarrow h_3^V \text{ and } h_4^V$

 $\rightarrow h_1^V$ and h_2^V

Z dipole moments:

$$\mu_Z = \frac{-e}{\sqrt{2}m_Z} \frac{E_\gamma^2}{m_Z^2} (h_1^Z - h_2^Z)$$

$$E_\gamma^2$$

$$d_Z = \frac{-e}{\sqrt{2}m_Z} \frac{E_{\gamma}^2}{m_Z^2} (h_3^Z - h_4^Z) \qquad Q_Z^m = \frac{2\sqrt{10}e}{m_Z^2} h_3^Z$$

Tevatron Experiments

Zy Production

- > Search for Z γ with Z->e⁺e⁻, $\mu^+\mu^-$, $\sqrt{\nu}$
- > SM Z γ production:
 - Initial-state radiation (ISR)
 - Final-state radiation (FSR)
- No direct Z-γ coupling in Standard Model
 - Anomalous coupling
 produce excess
 events at high E_{Tγ}

 $|^{+}|^{-}\gamma : Low backgrounds$ ννγ : higher branching fraction $<math display="block">\int_{u}^{z} \int_{u}^{v} \int_{u}^{v} ISR (M_{u}^{*} M_{z})$ $\int_{u}^{z} \int_{u}^{v} \int_{u}^{v} \int_{u}^{v} FSR (M_{u}^{*} M_{z})$

Anomalous Coupling (M_e~M_Z)

Zy Analysis

Zy Invariant Mass

$E_{T\gamma} > 7 \text{ GeV}$ ISR ($M_{II} \sim M_Z$) & FSR ($M_{II\gamma} \sim M_Z$) Clearly visible

➤ Use MC to generate Ety templates → function of Anomalous Triple-Gauge Couplings → use to look for & set limit on ATGC's

E_T [GeV] 12

ATGC Limits (Λ =1.5 TeV)

ZZ Production

1111 ANN 2

ZZ cross section is small

 \rightarrow ZZ-> eeee, eeµµ,µµµµ

- low backgrounds
- small branching fraction

→ZZ -> l+l-jj or l+l-νν

- larger branching fractions
- significant backgrounds

Parameterization from G.J. Gounaris *et al.* PRD 62, 073012.

$$\Gamma_{ZZV}^{\alpha\beta\mu}(q_1, q_2, P) = \frac{i(s - m_V^2)}{m_Z^2} [f_4^V(P^{\alpha}g^{\mu\beta} + P^{\beta}g^{\mu\alpha}) - f_5^V \epsilon^{\mu\alpha\beta\rho}(q_1 - q_2)_{\rho}],$$

 f_{7,Z_5} and f_{7,Z_4} 0 in SM

 $= ie \ \Gamma^{\alpha,\beta,\mu}_{V_1V_2V_3}(q_1,q_2,P)$

ZZ

ZZ ATGC Limits (1/fb)

D0 Results
 4 leptons

 (eeee, eeμμ, μμμμ)
 1 event, 0.13 ± 0.03 bkg

anomalous couplings limits:

- effective Lagrangian non-SM parameters: f_{7,Z_5} and f_{7,Z_4}
- 0 in SM
 - $-0.26 < f_4 < 0.26$ (D0)
 - - 0.28 < f_4^{Z} < 0.28 (D0)
 - $-0.30 < f_{\gamma_5} < 0.28$ (D0)
 - - 0.31 < f_5^{Z} < 0.29 (D0)

Λ = 1.2 TeV

0.2

-0.2

0.4

-0.2

17

0.4

PRL 100, 131801 (2008)

ZZ ATGC Limits (1.9/fb)

<u>CDF Results</u>

- Search for 2 leptons and 2 jets
 - → sort results by PTII
 - Search for excess Z->jj

Anomalous couplings Limits:

 effective Lagrangian non-SM parameters: f_{γ,Z_5} and f_{γ,Z_4}

• 0 in SM

- $-0.10 < f_4 < 0.10$ (CDF)
- - 0.12 < f_{4}^{Z} < 0.12 (CDF)
- - 0.11 < f_{γ_5} < 0.11 (CDF)

• - 0.13 <
$$f_5^{Z}$$
 < 0.12 (CDF)

ZZ Production (1.7/fb)

- D0 Results
 4 leptons
 (eeee, eeμμ, μμμμ)
- > 3 events, 0.14^{+0.03} bkg
 - →5.3 σ observation
- > Combine with ZZ->I⁺I⁻ $\nu \nu$

→ 5.7 σ observation
 → σ(ZZ)=1.60 ±0.63^{+0.16}_{-0.17} pb

σ(ZZ)=1.4 ±0.1 pb (SM)

ZZ Production (4.8/fb)

<u>CDF Results</u>

- Search for 4 leptons or 2 leptons + 2 v
 - →4 leptons (eeee, eeµµ, µµµµµ)
 - clean, but small branching fraction
 - increase acceptance wherever possible
 - → 5.7 σ observation
 → σ(ZZ)=1.56 ^{+0.80}/_{-0.63} ±0.25 pb

5 events in signal box:

- three 4-μ
- two ee $\mu\mu$

σ(ZZ)=1.4 ±0.1 pb (SM)

ZZ Production (6/fb)

CDF Results

- Search for 4 leptons
 - \rightarrow 4 leptons (eeee, eeµµ, μμμμ)
 - clean, but small branching fraction
 - 76 < M_{II} < 106 GeV
 - MIIII < 300 GeV
 - will look for ZZ resonance 🚠 above this
 - \rightarrow Normalize to $\sigma(Z)$
 - $\sigma(ZZ) = 1.7^{+1.2} \pm 0.2 \text{ pb}$
 - → Could be used for new ATGC limits

Diboson production is well described by the Standard Model!

- > All modes have been seen, including ZZ
- > Couplings look like SM!

	Λ=1.2 TeV	Λ=1.5 TeV
h ^γ ₃	(-0.022, 0.021)	(-0.017, 0.016)
$h^{\gamma}{}_4$	(-0.0009, 0.0010)	(-0.0006, 0.0006)
h^{Z}_{3}	(-0.018, 0.020)	(-0.017, 0.016)
h_{4}^{Z}	(-0.0009, 0.0009)	(-0.0006, 0.0005)
f_{4}	(-0.10, 0.10)	
fr ₅	(-0.11, 0.11)	
f^{Z}_{4}	(-0.12, 0.12)	
f^{Z}_{5}	(-0.13, 0.12)	

CDF 2D ATGC Limits

25