Measurements and searches with matrix element techniques in W+jets signatures

International Union of Pure and Applied Physics (IUPAP) Awards talk

Florencia Canelli

The University of Chicago and Fermilab ICHEP – Paris, France July 26, 2010

Dedicated to all my mentors and advisors

W+Jets Signature

Top Quark Measurements

Matrix Element Technique

 Probability density functions for an event characterized by a set of measurements x

Similar to the methods suggested by R. H. Dalitz and G. R. Goldstein, Phys. Rev. D 45, 1531 (1992), K. Kondo, J. Phys. Soc. Jpn. 60, 836 (1991), K. Kondo, J. Phys. Soc. Jpn. 57, 4126 (1998).

Measurements using Matrix Elements

Sum over all states that can lead to the set of measurements x

$$P(x \mid \alpha) = \sum_{states} c_s P_s(x \mid \alpha)$$

Detector acceptance (e.g. cuts, trigger, ...)

$$P_m(x \mid \alpha) = Acc(x)P(x \mid \alpha)$$

Given N events the optimal estimation of the set of parameters α is obtained by maximizing

$$L(\alpha) = \prod_{i=1}^{N} P_m(x_i \mid \alpha)$$

Input Variables

Good modeling of signal and background is crucial

Top Quark Mass – Run I

This technique improved the statistical error on M_t from 5.6 GeV [PRD 58 52001, (1998)] to 3.6 GeV. Equivalent to a factor of 2.4 in the number of events.

Top Quark Mass – Run II

- Many improvements in the probability calculations
- Main gain has been from 1) including a Jet Energy Scale (JES) parameter in the minimization, 2) including integration over the P_T of the ttbar system, 3) angular integration

Top Quark Mass – Current Status

Top Quark Couplings

- Top is special: very massive, decays before hadronizing
- In beyond the SM scenarios, significant deviations from the SM expectation are possible due to the presence of anomalous couplings in the tWb vertex
- The V—A structure of the weak interaction can be tested by reconstructing the polarization of the W boson from top-quark decay

Parameterize ttbar probability as functions of f₀ and f₊

Top Couplings – Run I

- Measure f₀ while fixing the other fractions to SM predictions
- Limited by the small size of the Run I data, better sensitivity than other methods

Top Couplings – Run II

- With the increase statistics of Run II we could move to a modelindependent measurement: simultaneous measurements of f₀ and f₊
- After bias corrections, measurements are unphysical, use FC to obtain confidence intervals

W+Jets Signature

Establishing Processes

微荐14

Searches using Matrix Elements

 Define ratio of probability density hypotheses as event probability discriminant (EPD)

Input Variables

Inputs to the probability densities (signal included)

 Good modeling of the background is essential: use many different control regions, discrepancies are taken as systematic uncertainties or we apply additional selection criteria

Diboson: WW+WZ

- S/B ~ 1/30
- Establish confidence in techniques for Higgs
 - Resonant dijet search
 - Similar issues in background modeling and systematic uncertainties

 σ (WW/WZ) =17.7 ± 3.9(stat) ± ^{1.6}_{1.4}(syst) pb

- First observation, 5.4 σ significance
- Standard Model prediction σ = 16.1 ± 0.9 pb

Single Top Quark

- S/B ~1/17
- Jets must be b-tagged:
 - Similar techniques as Higgs search

 σ (single-top) =2.5 ± ^{0.7}_{0.6}(stat+syst) pb

Observed (expected) 4.3 (4.9) σ significance

Standard Model prediction

 $\sigma_{t-channel}$ (NLO @ m_t=175 GeV) = 0.98 ± 0.04 ps $\sigma_{s-channel}$ (NLO @ m_t=175 GeV) = 2.16 ± 0.12 pb

Higgs: WH

■ S/B ~ 1/100

- More b-tagging divisions:
 - Separate different S/B regions
- More acceptance:
 - Secondary triggers, events with 3 jets, etc.

Heavy Quarks

 Search for single production of new heavy quarks via a charged current interaction

Feature of many non SM theories

- Focus on new D and U, assuming B.R. $(Q \rightarrow Wq)=100\%$, where q is a first generation SM quark.
- S/B~1/10 (M_D=300) 1/130 (M_D=600)

Summary

- The matrix element technique developed over the last decade has improved precision measurements and also helped establish new processes
 - This is in great part possible due to the availability of CPU
 - The improved modeling of the Monte Carlo tools
- W+jets physics has given us strong SM foundation for beyond SM
 - Top quark mass measurements
 - Top quark coupling probes
 - Single top observation
 - Diboson w/jets observation
 - Higgs searches
 - Heavy quark searches
- Tevatron data has inspired many of us
- The LHC is making us all dream even bigger
- I would like to thank my colleagues (some in pictures) for these exciting times !

