LHC Commissioning and First Operation

ICHEP, July 26, 2010, Paris, Francs

Steve Myers

Director for Accelerators and Technolog

CERN Geneva

(On hehalf of the LHC team and international collaborate

Superconducting Proton Accelerator and Collider installed in a 27km circumference underground tunnel (tunnel cross-section diameter 4m) at CERN Tunnel was built for LEP collider in 1985

LHC: Some Technical Challenges

		400 450m underground
Circumference (km)	26.7	100-150m underground
Number of superconducting twin-bore	1232	Cable Nb-Ti, cold mass 37million kg
Dipoles		
Length of Dipole (m)	14.3	
Dipole Field Strength (Tesla)	8.4	Results from the high beam energy needed
	4.0	Superconducting magnets needed for the high magnetic
Operating Temperature (K) (cryogenics	1.9	field
system)		Super-fluid helium
Current in dipole sc coils (A)	13000	Results from the high magnetic field
		1ppm resolution
		2.2.10 ⁻⁶ loss causes quench
Beam Intensity (A)	0.5	
Beam Stored Energy (MJoules)	362	Results from high beam energy and high beam current
		1MJ melts 1.5kg Cu
Magnet Stored Energy (MJoules)/octant	1100	Results from the high magnetic field
magnet otored Energy (moodles)/octant	1100	
Sector Powering Circuit	8	1612 different electrical circuits

The Past 21 months (reminder)

The Present (status)

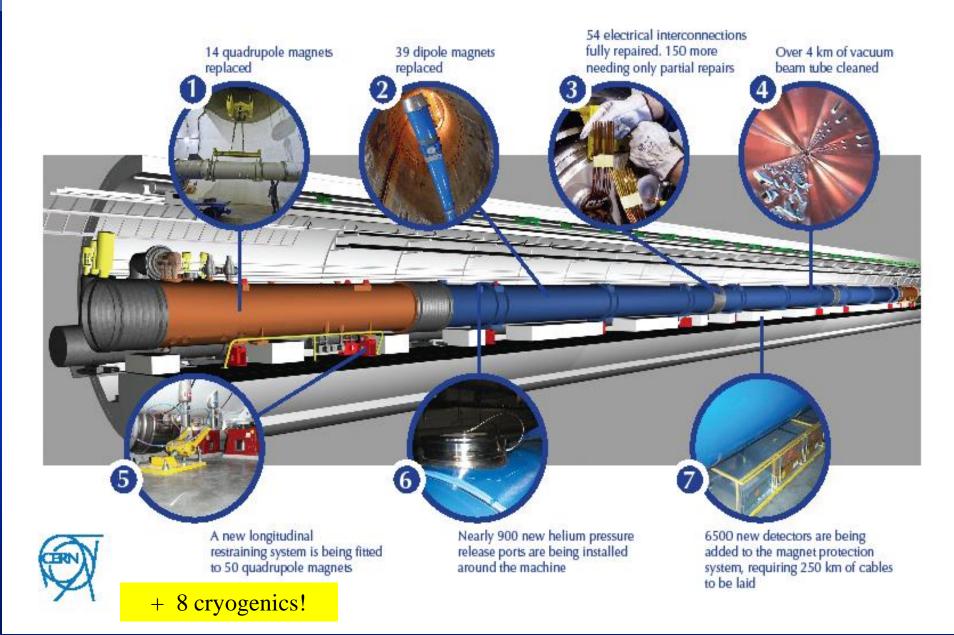
The Future

- Short term
- Medium term
- Long term

Incident of September 19th 2008

- A very impressive start-up with beam on September 10, 2008
- During a few days period without beam
- Making the last step of dipole circuit in sector 34, to 9.3kA
- At 8.7kA, development of resistive zone in the dipole bus bar splice between Q24 R3 and the neighbouring dipole
- Electrical arc developed which punctured the helium enclosure

Summary LHC Commissioning (1)


2008

- Accelerator complete
- Ring cold and under vacuum
- September 10th 2008
 - First beams around
- September 19th 2008
 - The incident
- 2008 2009
 - 14 months of major repairs and consolidation
 - New Quench Protection System for online monitoring and protection of all joints.

2008

Phase 1 +2 The LHC repairs in detail

Summary of LHC Commissioning (2)

2009

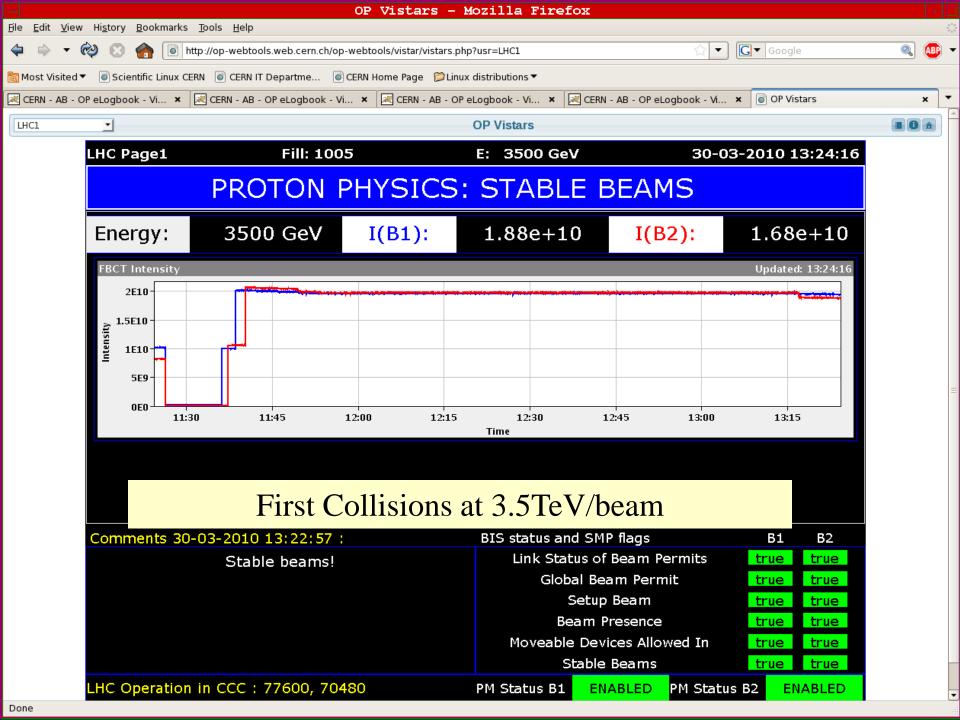
- November 20th 2009
 - First beams around again
- November 29th 2009
 - Both beams accelerated to 1.18 TeV simultaneously
- December 8th 2009
 - 2x2 accelerated to 1.18 TeV LHC highest energy collider
 - First collisions at 2.36 TeV cm!
- December 14th 2009
 - Stable 2x2 at 1.18 TeV
 - Collisions in all four experiments

Limited to 2 kA in main circuits (1.18 TeV) during deployment and testing of new Quench Protection System

Decided Scenario 2010-2011

Following the technical discussions in Chamonix (Jan 2010) the CERN management and the LHC experiments decided

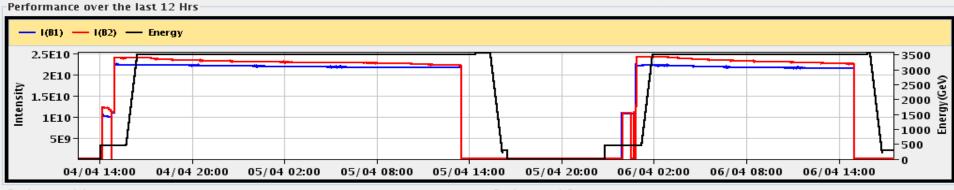
- Run at 3.5 TeV/beam up to a integrated luminosity of around 1fb⁻¹.
- Then consolidate the whole machine for 7TeV/beam (during a shutdown in 2012)
- From 2013 onwards LHC will be capable of maximum energies and luminosities

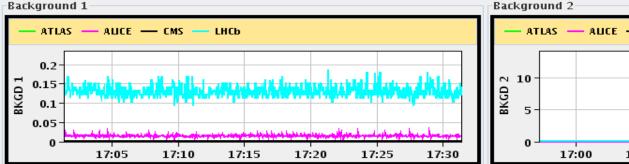

Why do we limit the beam energy to 3.5TeV in 2010-2011?

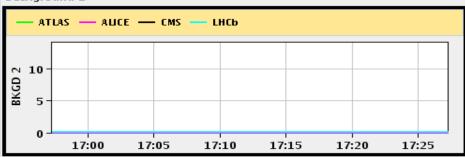
All the work we have done since November 2008 makes us certain that a repeat of September 19 can NEVER happen.

The offending connector in this incident had an estimated resistance of 220nΩ. We have measured all 10,000 inter-magnet connectors and the maximum resistance we have seen is 2.8nΩ.
BUT in April 2009, we have uncovered a different possible failure scenario which could under certain circumstances produce an

electric arc in the "copper stabilizers" of the magnet interconnects

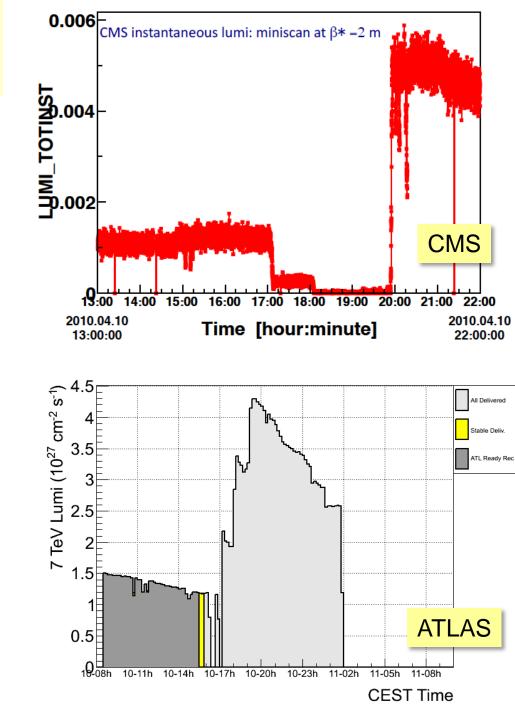



Summary of Luminosity Evolution 2010


Event	β*	Nb	b	ltot	MJ	MJ	Nc	Peak	Date
						Factor		luminosity	
1	10	2	1.00E+10	2.0E+10	0.0113	0.0000	1	8.9E+26	30 March 2010
2	10	2	2.00E+10	4.0E+10	0.0226	2.0000	1	3.6E+27	02 April 2010
3	2	2	2.00E+10	4.0E+10	0.0226	1.0000	1	1.8E+28	10 April 2010
4	2	4	2.00E+10	8.0E+10	0.0452	2.0000	2	3.6E+28	19 April 2010
5	2	6	2.00E+10	1.2E+11	0.0678	1.5000	4	7.1E+28	15 May 2010
6	2	13	2.60E+10	3.4E+11	0.1910	2.8167	8	2.4E+29	22 May 2010
7	3.5	3	1.10E+11	3.3E+11	0.1865	0.9763	2	6.1E+29	26 June 2010
8	3.5	6	1.00E+11	6.0E+11	0.3391	1.8182	4	1.0E+30	02 July 2010
9	3.5	8	9.00E+10	7.2E+11	0.4069	1.2000	6	1.2E+30	12 July 2010
10	3.5	13	9.00E+10	1.2E+12	0.6612	1.6250	8	1.6E+30	15 July 2010

Easter: A very good 48 hour period!

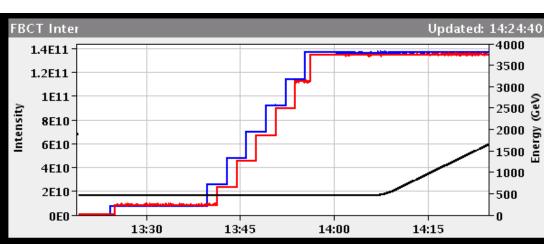
	-	-			-		_			7							
Event	β*	Nb	lb	ltot	MJ	MJ	Nc	Peak		nergy:	297.4	GeV	I(B1):	1.55e+08	I(B2	2): 7.01e	+07
						Factor		luminosity			Al	ICE		CMS		LHCb	
1	10	2	1.00E+10	2.0E+10	0.0113	0.0000	1	8.9E+26	30 March 2010		NOT	READY		STANDBY		STANDBY	
2	10	2	2.00E+10	4.0E+10	0.0226	2.0000	1	3.6E+27	02 April 2010		0.00	000		0.000- 1.00		0.000-0	
3	2	2	2.00E+10	4.0E+10	0.0226	1.0000	1	1.8E+28	10 April 2010	,	0.00	0e+00		0.000e+00		8.989e-0	4
4	2	4	2.00E+10	8.0E+10	0.0452	2.0000	2	3.6E+28	19 April 2010		4.05	59e-32		2.086e-11		1.635e-3	2
5	2	6	2.00E+10	1.2E+11	0.0678	1.5000		7.1E+28	15 May 2010		0	014		0.000		0 121	
6	2	13	2.60E+10	3.4E+11	0.1910	2.8167	8	2.4E+29	22 May 2010		U.	014		0.002		0.131	
7	3.5	3	1.10E+11	3.3E+11	0.1865	0.9763	2	6.1E+29	26 June 2010		0.	000		0.002		0.002	
8	3.5	6	1.00E+11	6.0E+11	0.3391	1.8182	4	1.0E+30	02 July 2010		0	005		0.003		0.037	
9	3.5	8	9.00E+10	7.2E+11	0.4069	1.2000	6	1.2E+30	12 July 2010		0.	005		0.003		0.037	
10	3.5	13	9.00E+10	1.2E+12	0.6612	1.6250	8	1.6E+30	15 July 2010	Position	оит	Gap: 58	3.0 mm	TOTEM:	CAL	IBRATION	



10th April IP1 and 5, beta squeeze

- Raw (online) lumi plots on 10 apr 2010, during the squeeze to 2m in IP1 and IP5
- Factor gained (raw numbers):
 - ~4.5 in Pt5 (after min scan)
 - ~4 in Pt1
- Not corrected for lumi decay over the ~5h of squeeze and mini scans

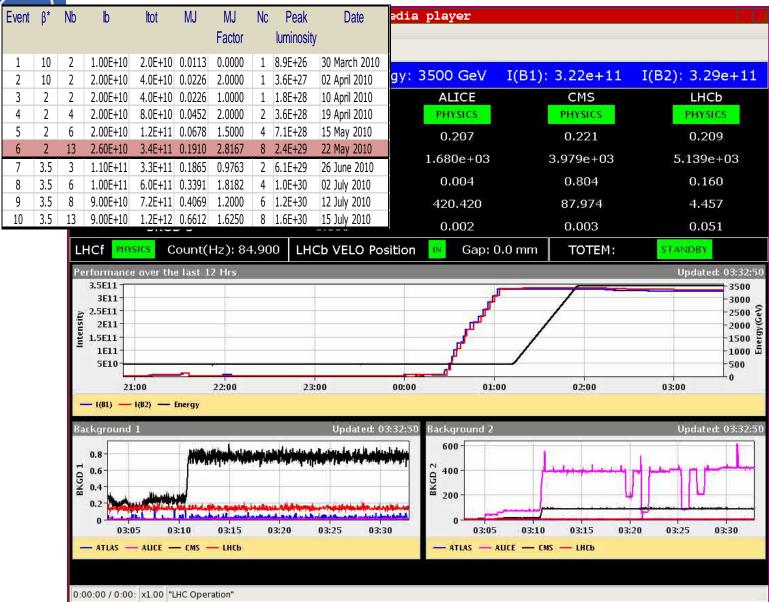
Event	β*	Nb	b	ltot	MJ	MJ Factor	Nc	Peak luminosity	Date
1	10	2	1.00E+10	2.0E+10	0.0113	0.0000	1	8.9E+26	30 March 2010
2	10	2	2.00E+10	4.0E+10	0.0226	2.0000	1	3.6E+27	02 April 2010
3	2	2	2.00E+10	4.0E+10	0.0226	1.0000	1	1.8E+28	10 April 2010
4	2	4	2.00E+10	8.0E+10	0.0452	2.0000	2	3.6E+28	19 April 2010
5	2	6	2.00E+10	1.2E+11	0.0678	1.5000	4	7.1E+28	15 May 2010
6	2	13	2.60E+10	3.4E+11	0.1910	2.8167	8	2.4E+29	22 May 2010
7	3.5	3	1.10E+11	3.3E+11	0.1865	0.9763	2	6.1E+29	26 June 2010
8	3.5	6	1.00E+11	6.0E+11	0.3391	1.8182	4	1.0E+30	02 July 2010
9	3.5	8	9.00E+10	7.2E+11	0.4069	1.2000	6	1.2E+30	12 July 2010
10	3.5	13	9.00E+10	1.2E+12	0.6612	1.6250	8	1.6E+30	15 July 2010


 $2 \times 2e10 \rightarrow 4 \times 2e10$

6 x 2e10 per beam

48 hours

						\leftarrow			
Event	β*	Nb	b	ltot	MJ	MJ	Nc	Peak	Date
						Factor		luminosity	
1	10	2	1.00E+10	2.0E+10	0.0113	0.0000	1	8.9E+26	30 March 2010
2	10	2	2.00E+10	4.0E+10	0.0226	2.0000	1	3.6E+27	02 April 2010
3	2	2	2.00E+10	4.0E+10	0.0226	1.0000	1	1.8E+28	10 April 2010
4	2	4	2.00E+10	8.0E+10	0.0452	2.0000	2	3.6E+28	19 April 2010
5	2	6	2.00E+10	1.2E+11	0.0678	1.5000	4	7.1E+28	15 May 2010
6	2	13	2.60E+10	3.4E+11	0.1910	2.8167	8	2.4E+29	22 May 2010
7	3.5	3	1.10E+11	3.3E+11	0.1865	0.9763	2	6.1E+29	26 June 2010
8	3.5	6	1.00E+11	6.0E+11	0.3391	1.8182	4	1.0E+30	02 July 2010
9	3.5	8	9.00E+10	7.2E+11	0.4069	1.2000	6	1.2E+30	12 July 2010
10	3.5	13	9.00E+10	1.2E+12	0.6612	1.6250	8	1.6E+30	15 July 2010

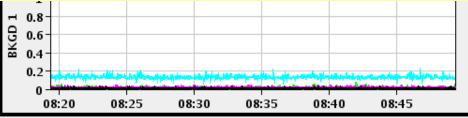

LHC status

7/25/2010

13 bunches: 3x10²⁹ !!

LHC Design Bunch Intensity: Thursday 15.4.2010

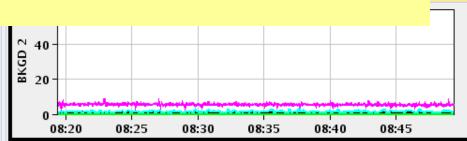
- Higher intensity
 - Over-injection working well
 - Over-injected 1.1E11, with collimators at nominal 4.5 sigma settings.
 - Emittance at 1E11: 2.5 um H, 2,3 um V.


03-May-2010 08:49:21 Fill #: 1069 Energy: 450.1 GeV I(B1): 1.35e+11 I(B2): 1.59e+11

	ATLAS	ALICE	CMS	LHCb
Experiment Status	PHYSICS	PHYSICS	PHYSICS	PHYSICS
Instantaneous Luminosity	4.080e-03	2.376e-03	3.276e-03	2.314e-03
BRAN Count Rate	0.000e+00	0.000e+00	5.000e+00	1.000e+00
BKGD 1	0.015	0.013	0.010	0.122
BKGD 2	0.000	5.000	0.774	0.850
BKGD 3	0.000	0.005	0.003	0.047
LHCf PHYSICS Count(Hz): 0.000	LHCb VELO Position	<mark>⊪</mark> Gap: 20.0 mm	тотем:	STANDBY
Performance over the last 12 Hrs				
— I(B1) — I(B2) — Energy				
2E11 ≥ 1.5E11 1.5E11 1E11 5E10				- 3500 - 3000 - 2500 - 2000 - 2000 - 1500 - 1500

3rd May: Stable beams at design current per bunch at 450GeV Much easier than anticipated!!

00:00


22:00

18:00

20:00

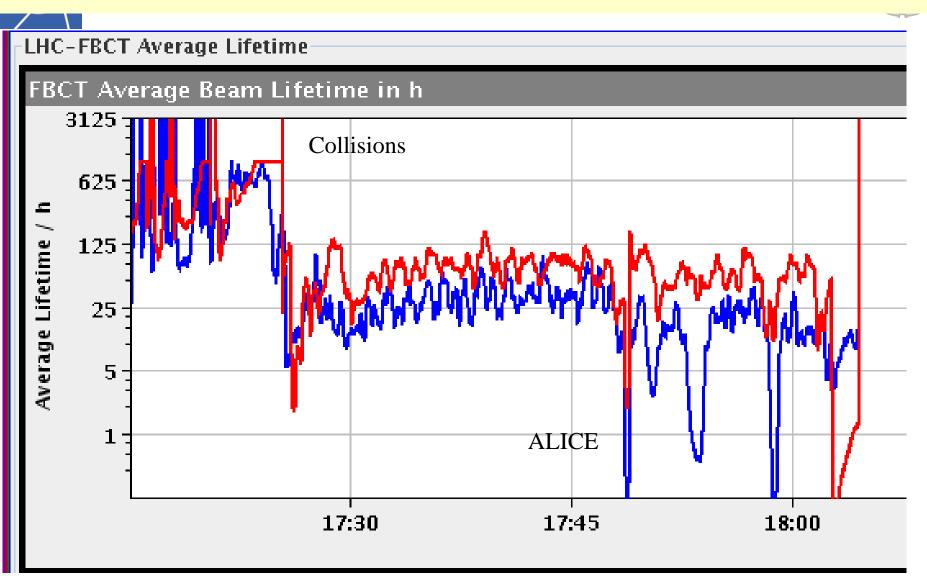
16:00

06:00

04:00

02:00

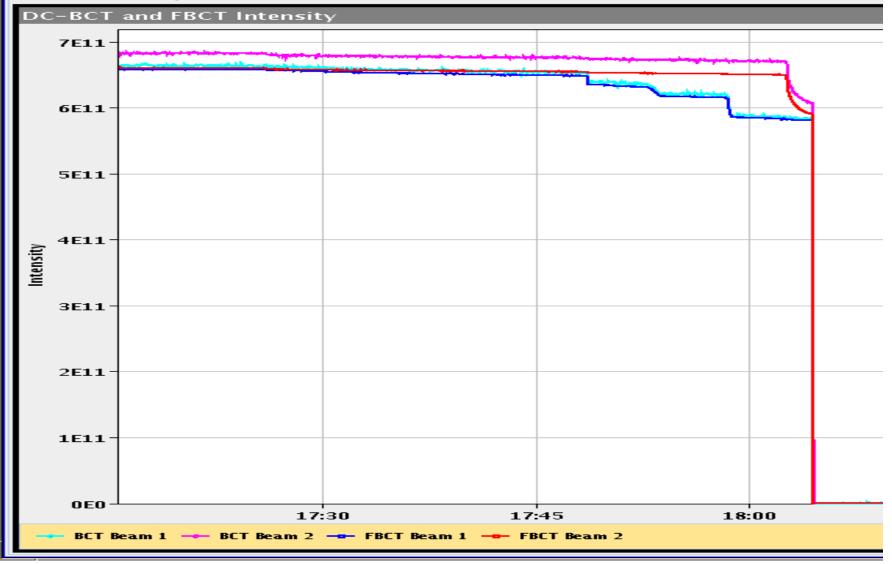
-500 0


08:00

Preparation for design intensities at 3.5TeV/beam

- From 3rd May until 9 June, machine time shared between physics and machine studies.
 - Physics with ~2x10¹⁰ protons/bunch
 - Machine studies to develop 1x10¹¹ protons per bunch

Following discussions with the 4 spokespersons and the physics coordinator, a decision was unanimously made on 9 June to concentrate on "Machine studies to develop 1×10^{11} protons per bunch" until it was operational. This meant postponing physics data taking for around 2-3 weeks.


Not as easy as we anticipated after the 450GeV runs

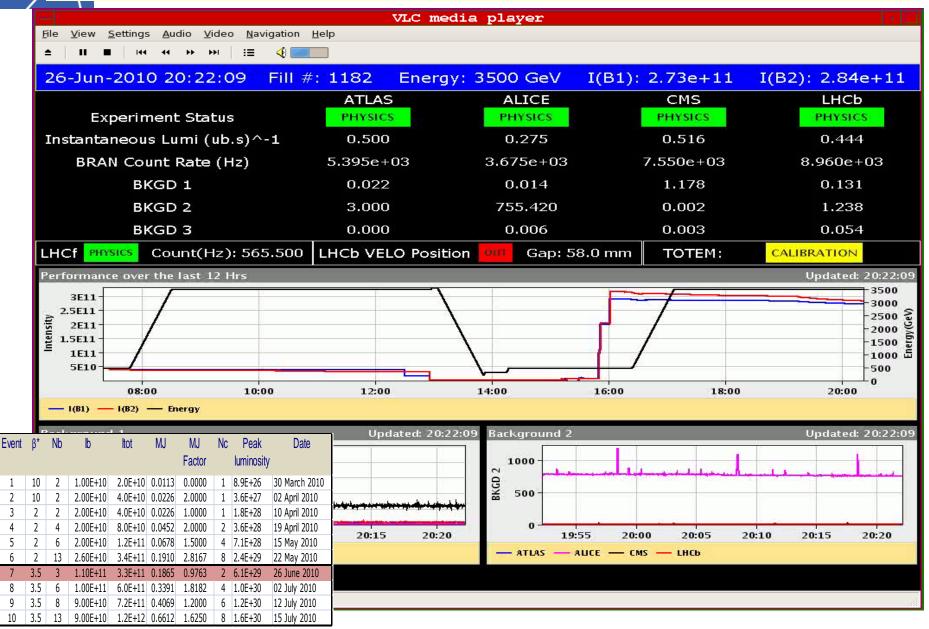
Beam Intensity Losses

LHC-DCBCT - System A-

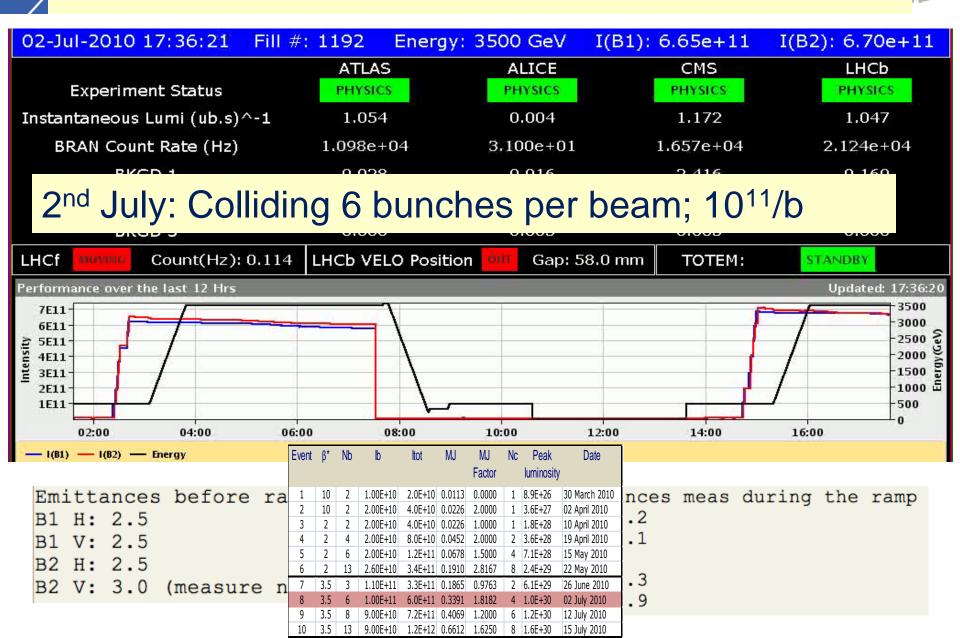
Getting to Stable beams at ~1.1x10¹¹.

• Set up for high intensity

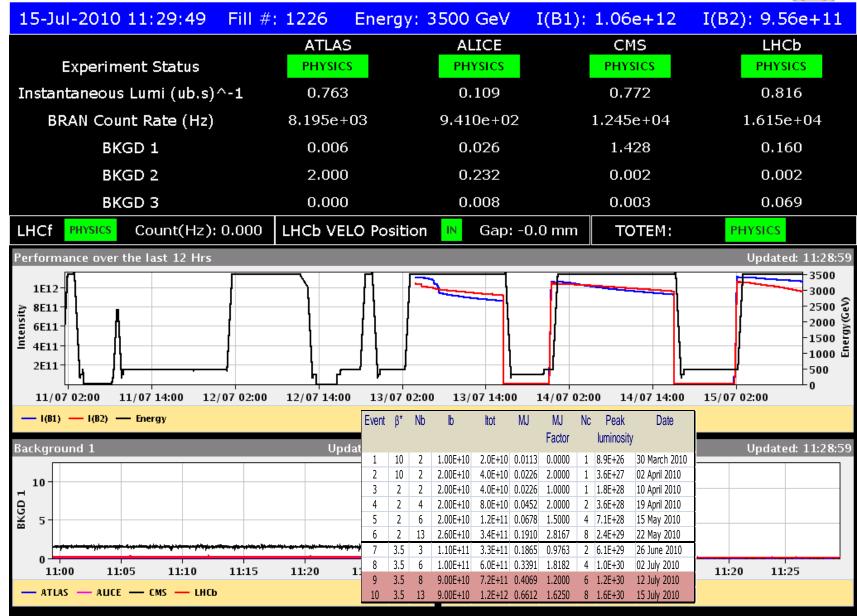
- Collimators (loss maps)
- Injection tuning
- Beam dump set up

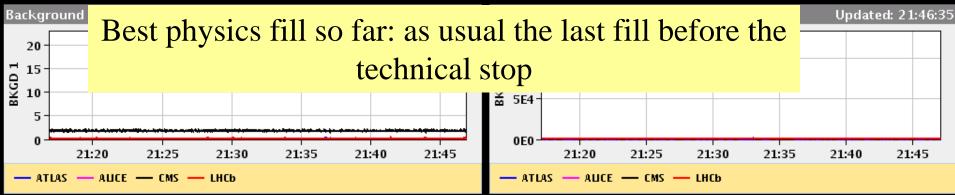

This part was anticipated as needed

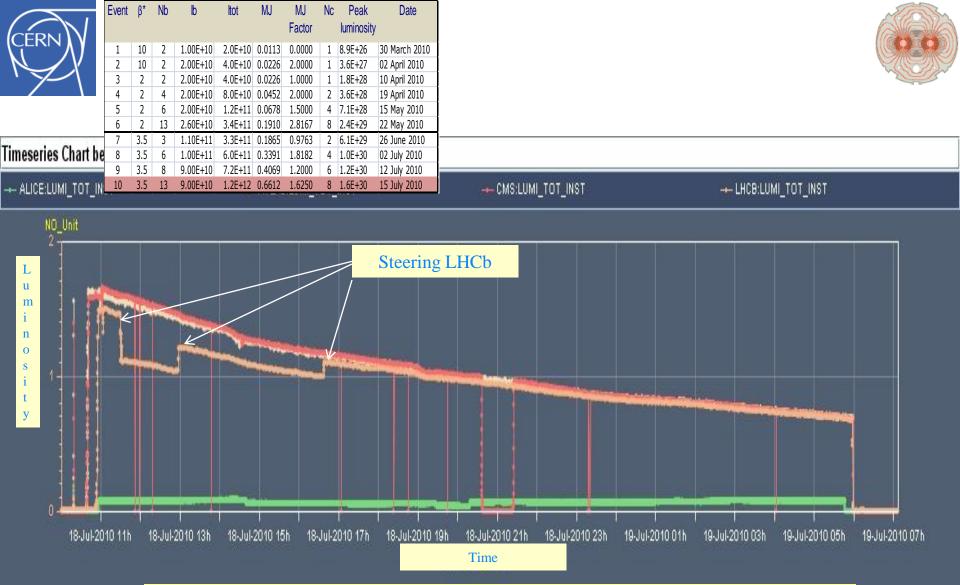
Not anticipated following collisions at 450 GeV


- Instabilities in Collision at 3.5TeV/beam
 - Collimator closer to beam \rightarrow increased beam impedance \rightarrow transverse stability limit reduced
 - Peak current increased \rightarrow transverse instabilities
 - Cure: longitudinal emittance increase in the SPS and during the ramp in LHC
 - Cure: transverse feedback system
 - •Transverse beam size too small \rightarrow beam-beam
 - Cure: emittance increase in the SPS
 - Cure: emittance control during the ramp in the LHC
 - Cure: better equalization of emittances between beams 1 and 2

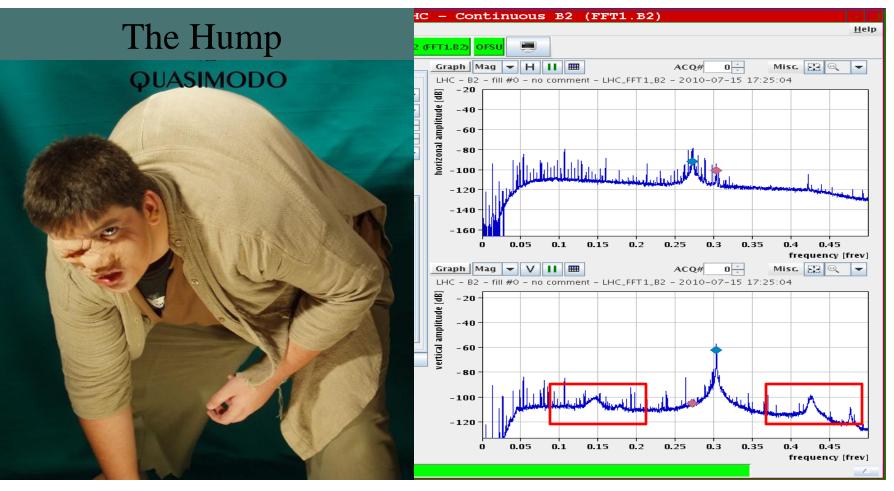
26th June: 5x10²⁹ with 3 bunches/beam; 10¹¹/b


New Record Lumi > 1e30 cm-2 s-1


Good periods !



18-Jul-2010 21:47:06 Fill #: 1233 Energy: 3500 GeV I(B1): 1.09e+12 I(B2): 1.06e+12

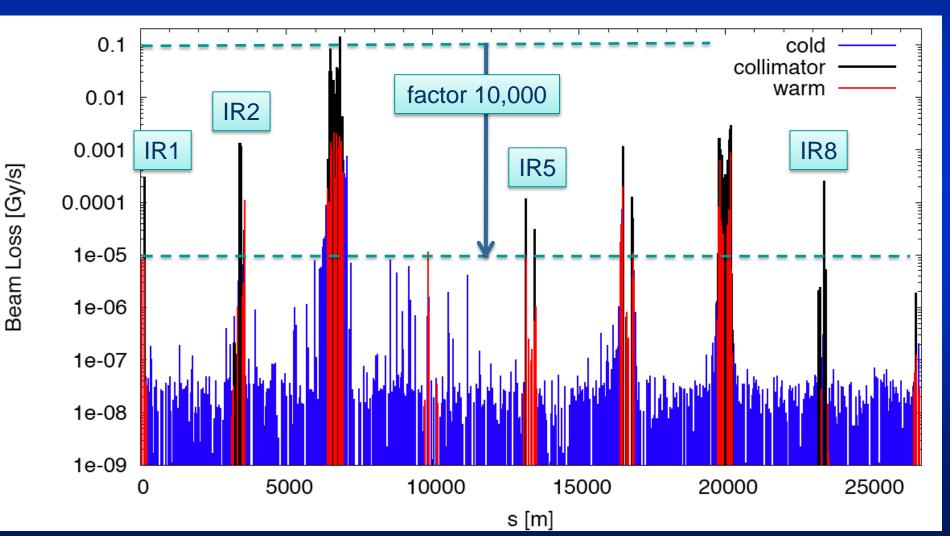


Fill 1233 Best LHC physics fill so far:

Some Accelerator Physics issues: The Hump

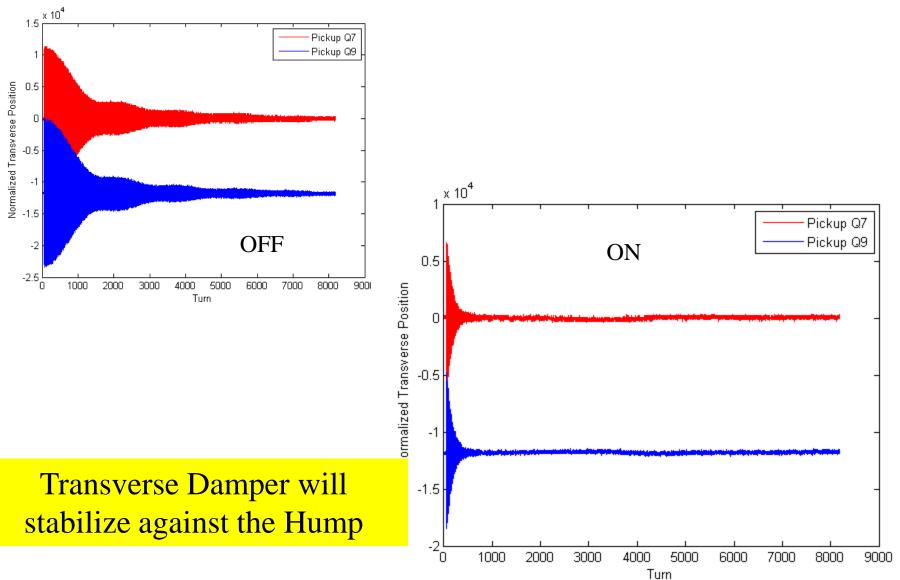
Cure: transverse feedback system

Closing Collimators During Ramp increases the transverse impedance



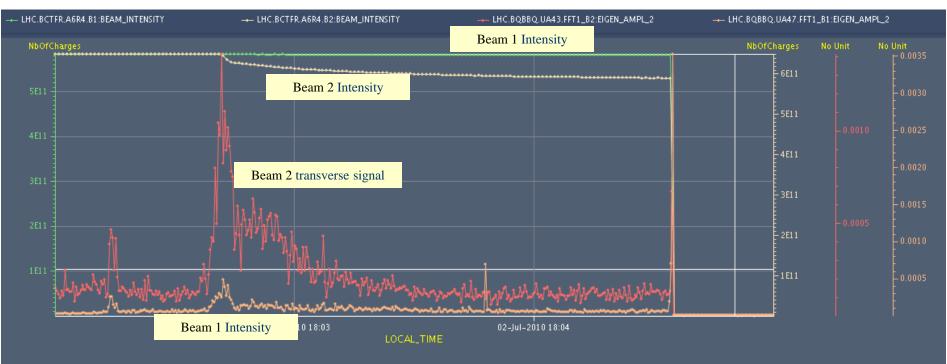
			g application. Curre	ently monitoring :	LHC - [1 subscript	ion]	a 📄
<u> </u>	LHC 🔻 🤗 🕻	oo ▼ RBA: Ihcop					
	Display the graph	hs on 1 - column(s) for	4,000 📩 points Minimum grap	h width 150 + px - heigh	it 150 ÷ px show lege	nd 🗹 smooth graphs 🗹 s	how points]
nonit	oring MeasuredC	ornerPositions for 78 devices :	TCTVB.4R8/MeasuredCornerPositi	ons		F	ixed Graph Close
20 -							
				· · · · · · · · · · · · · · · · · · ·			•
10 -						<u> </u>	
0 -							
-10-							
-20-							
	18	:10	18:20	18:30	18:40	18:50	
							1

Sol


Qualification: Off-momentum collimation

Loss map for off-momentum error. All OK. See expected low leakage to experimental IR's. OK for stable beams from coll.

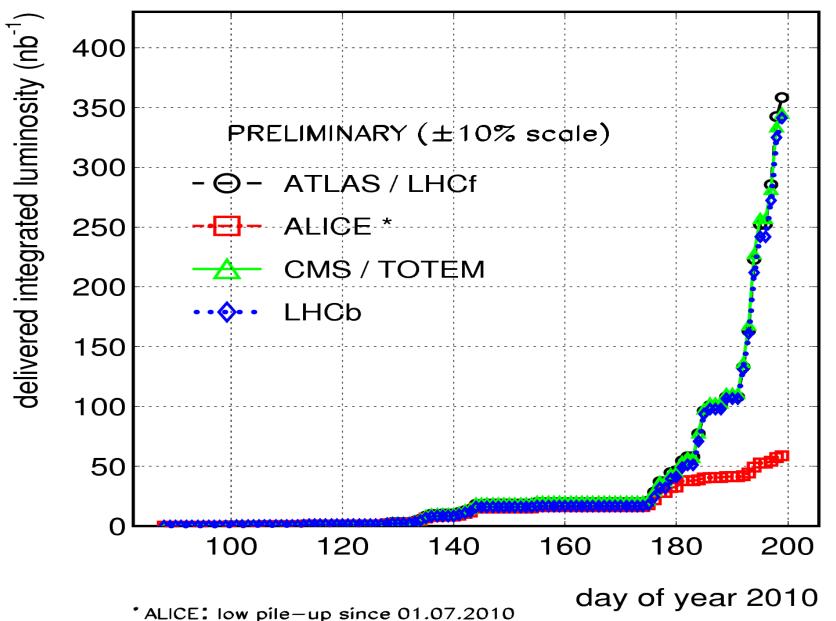
Transverse Damper: Damping Beam Excitations



Tune: Coherent Excitation

Transverse Damper will stabilize against these coherent instabilities

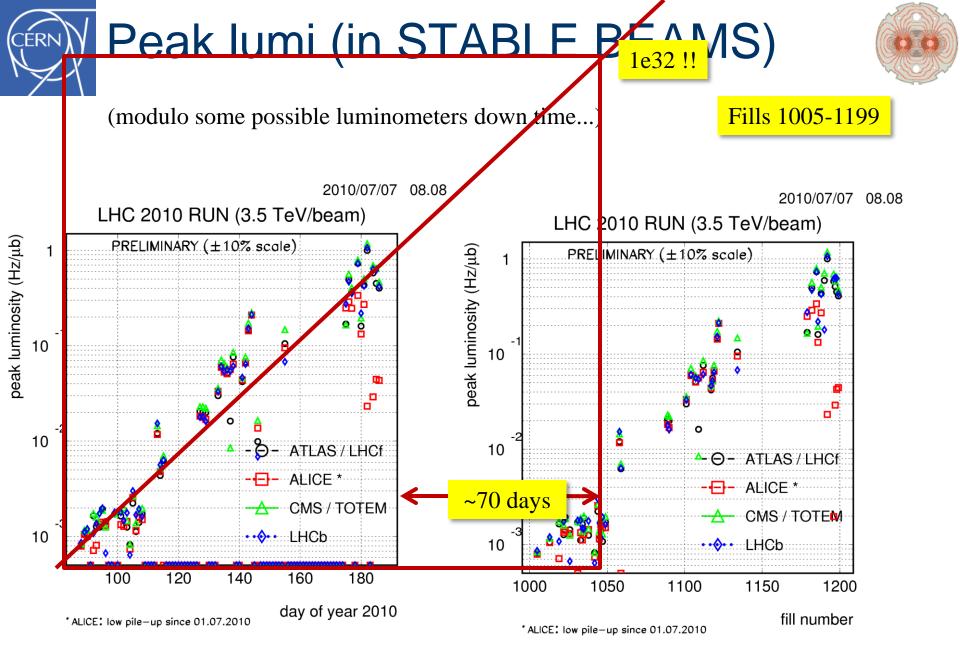
7/25/2010



Event	β*	Nb	b	ltot	MJ	MJ	Nc	Peak	Date
						Factor		luminosity	
1	10	2	1.00E+10	2.0E+10	0.0113	0.0000	1	8.9E+26	30 March 2010
2	10	2	2.00E+10	4.0E+10	0.0226	2.0000	1	3.6E+27	02 April 2010
3	2	2	2.00E+10	4.0E+10	0.0226	1.0000	1	1.8E+28	10 April 2010
4	2	4	2.00E+10	8.0E+10	0.0452	2.0000	2	3.6E+28	19 April 2010
5	2	6	2.00E+10	1.2E+11	0.0678	1.5000	4	7.1E+28	15 May 2010
6	2	13	2.60E+10	3.4E+11	0.1910	2.8167	8	2.4E+29	22 May 2010
7	3.5	3	1.10E+11	3.3E+11	0.1865	0.9763	2	6.1E+29	26 June 2010
8	3.5	6	1.00E+11	6.0E+11	0.3391	1.8182	4	1.0E+30	02 July 2010
9	3.5	8	9.00E+10	7.2E+11	0.4069	1.2000	6	1.2E+30	12 July 2010
10	3.5	13	9.00E+10	1.2E+12	0.6612	1.6250	8	1.6E+30	15 July 2010

2010/07/19 11.54

LHC 2010 RUN (3.5 TeV/beam)

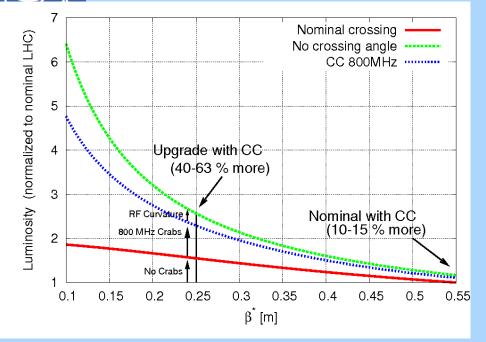


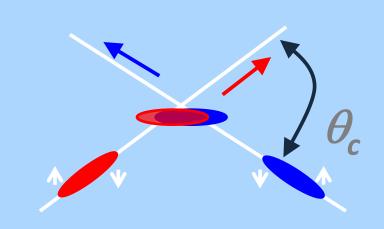
Integrated luminosity of $\geq 1 \text{ fb}^{-1}$ by the end of 2011

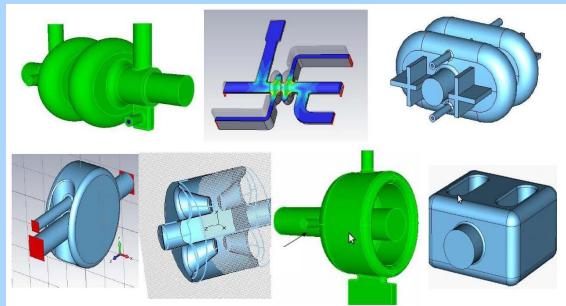
- requires a peak luminosity of $\geq 1 \times 10^{32} \text{ cm}^{-2} \text{s}^{-1}$ during 2011
- \rightarrow must reach ~1 x10³² cm⁻²s⁻¹ during 2010

Integrated luminosity of \geq 3000fb⁻¹ by the end of the LHC life

- requires a peak luminosity of $\geq 5 \times 10^{34} \text{ cm}^{-2}\text{s}^{-1}$ during 2021-2030
- \rightarrow integrated yearly luminosity of around 250-300fb⁻¹



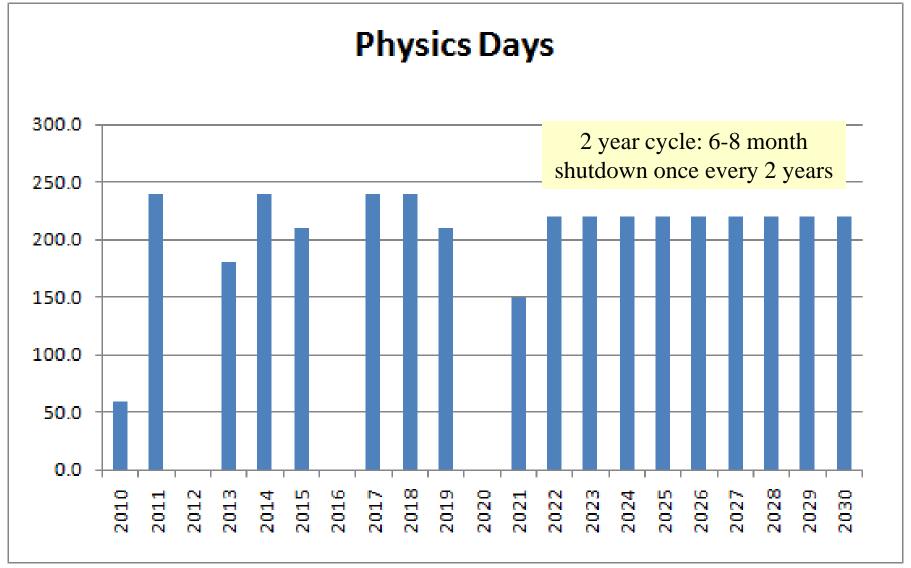

New studies under way (HL-LHC)



- High Gradient/Large Aperture Quads, with B_{peak} 13-15 T. (Nb₃Sn)
 - Higher field quadrupoles translate in higher gradient/shorter length or larger aperture/same length or a mix.
 - US-LARP engaged to produce proof by 2013.
 - β* as small as 22 cm are possible with a factor ~2.5 in luminosity by itself, if coupled with a mechanism to compensate the geometrical reduction
- Crab Cavities: this is the best candidate for exploiting small β*
 - However it should be underlined that today Crab Cavities are not validated for LHC, not even conceptually: the issue of machine protection will be addressed with priority
- SC links to replace at the surface electronic equipment today in the tunnel and exposed to high radiation
- New Cryoplants in IP1 & IP5: for power AND to make independent Arc- IR:
- Upgrades in the injector chain (LINAC4, PS Booster, PS, SPS)

\sim Crab cavities for exploiting low β^*

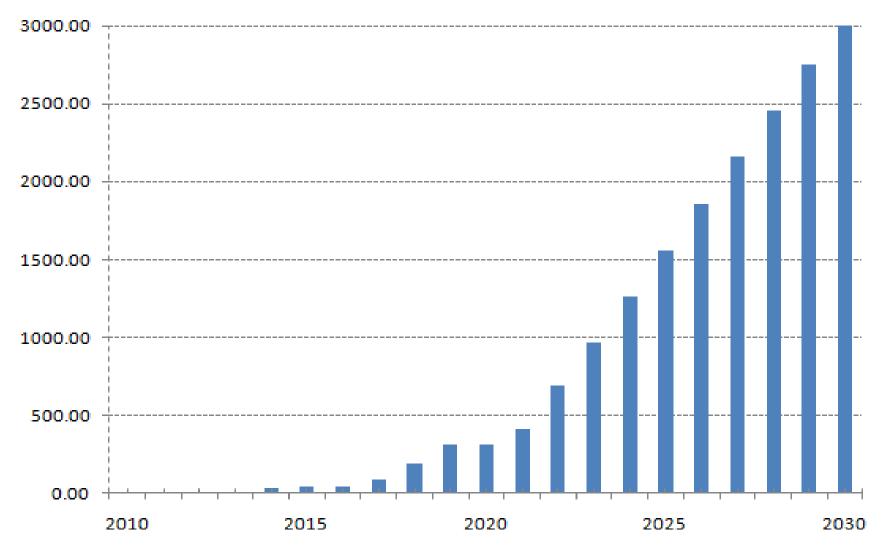
The 10 year technical Plan



2010	2011	201	12	2013	2014	2015	2	016
I J J A S O N D J F	M A M J J A S O N	D J F M A M J	J A S O N D J F M A	M J J A S O N D J F M	A M J J A S O N D J	F M A M J J A S O	N D J F M A M	J J A S O N D
on on on one of the second se		Machine: Splice C	Consolidation &	e e e e e e e e e e e e e e e e e e e	on ខ្ល	Ion	Machine: Collimati	on & prepare for
enanc		Collimation in IR3		enanc	enanc		crab cavities & RF c	ryo system
X-Mas maintenance		ALICE - detector co	ompletion	X-Mas main tenance	X-Mas maintenance		ATLAS: nw pixel de for ultimate lumine	
-Ması		ATLAS - Consolida beam pipes	ation and new forward	-Ması	-Masr		ALICE - Inner verte	x system upgrad
×		CMS - FWD muon	s upgrade +	×	×		CMS - New Pixel. N Photodetectors. Co	
		Consolidation					FWD muons upgra	
		LHCb - consolidati	ions				LHCb - full trigger u vertex detector etc	
		CDC up grada	626				SPS - LINAC4 co	
		SPS upgrade	SPS upgrade				PSB energy	
2016	2017		2018	2019	2020	20	PSB energy	
	2017	7			D J F M A M J J A S		PSB energy	
	2017	7	2018 M A M J J A S O N D				PSB energy	
J F M A M J J A S O	Z017 N J F M M J J	A S O N D J F 1	2018 M A M J J A S O N D	J F M A M J J A S O N	D J F M A M J J A S	O N D J F M A M J	PSB energy	
J F M A M J J A S O	ZO17 N J F M M J J prepare Image: Constraint of the second se	A S O N D J F 1	2018 M A M J J A S O N D	J F M A M J J A S O N		O N D J F M A M J	PSB energy	
J F M A M J J A S O Machine: Collimation and for crab cavities & RF cryc ATLAS: new pixel detect.	N D J F M A M J J prepare System - detect.	A S O N D J F 1	2018 M A M J J A S O N D	J F M A M J J A S O N	D J F M A M J J A S	0 N D J F M A M J	PSB energy	
F M A M J J A S O Machine: Collimation and for crab cavities & RF cryce	Prepare o system - detect.	7	2018 M A M J J A S O N D		D J F M A M J J A S Machine - maintenance 8	0 N D J F M A M J	PSB energy	
F M A M J J A S O Machine: Collimation and for crab cavities & RF cryc ATLAS: new pixel detect. for ultimate luminos ALICE - Inner vertex sy CMS - New Pixel. New HQ Photodetectors. Complete	Prepare o system - detect. sity. CAL	A S O N D J F 1	2018 M A M J J A S O N D	J F M A M J J A S O N	D J F M A M J J A S Machine - maintenance & ATLAS - New inner deter	0 N D J F M A M J	PSB energy	
F M A M J J A S O Machine: Collimation and for crab cavities & RF cryo ATLAS: new pixel detect. for ultimate luminos ALICE - Inner vertex sy CMS - New Pixel. New HC Photodetectors. Complet FWD muons upgrade	2017 N D J F M A M J J prepare o system - detect. sity. /stem CAL tion of e, new	A S O N D J F 1	2018 M A M J J A S O N D	J F M A M J J A S O N	J F M M J J A S Machine - maintenance A ATLAS New inner detect ALICE - Second vertex det	0 N D J F M A M J	PSB energy	
J F M A M J J A S O Machine: Collimation and for crab cavities & RF cryc ATLAS: new pixel detect. for ultimate luminos ALICE - Inner vertex sy CMS - New Pixel. New HC Photodetectors. Complet FWD muons upgrade LHCb - full trigger upgrade	2017 N D J F M A M J J prepare o system - detect. sity. /stem CAL tion of e, new	A S O N D J F 1	2018 M A M J J A S O N D	J F M A M J J A S O N	J F M M J J A S Machine - maintenance A ATLAS New inner detect ALICE - Second vertex det	0 N D J F M A M J	PSB energy	

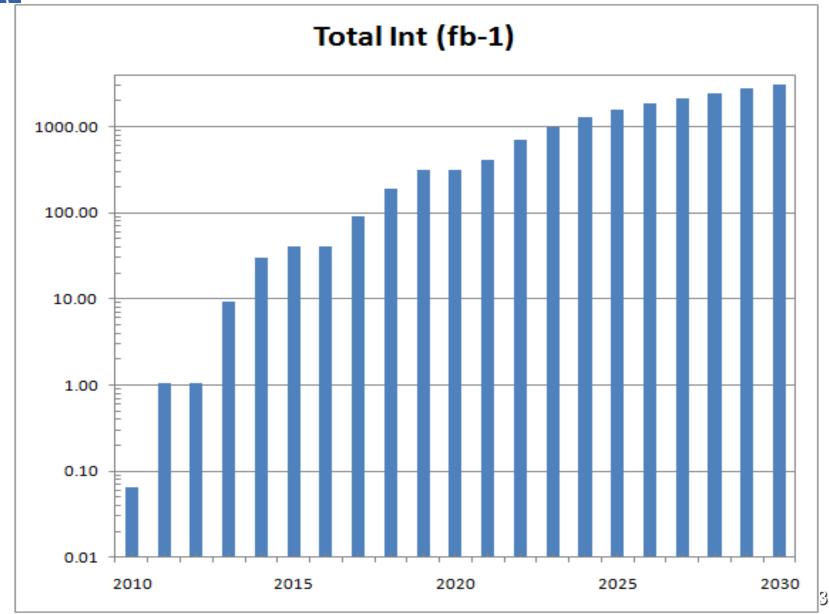
The 20 year physics plan

Preliminary Luminosity Predictions



	Year	TeV	OEF	β*	Nb	lb	ltot	MJ	Peak luminosity 1.886E+32 1.886F	Pile up	ph -	<i>wsics</i>	Integrated (fb-1/year)	
	2010	3.50	0.20	2.00	796	8.0E+10	6.4E+13	36.0	1.886E+32				0.1	0.07
	2011	3.50	0.25	2.00	796	8.0E+10	6.4E+13	36.0	1.8865	$ \sqrt{2} $			0.98	
	2012									$\Delta \gamma$			0.0	
	2013	6.50	0.20	0.55	796	1.15E+11	9.2E+13	9F	4.006E+34 5.390E+34 5.390E+34 5.390E+34 5.390E+34 5.390E+34 5.390E+34 5.390E+34			180.0	8.2	9.2
	2014	7.00	0.20	0.55	1404	1.15E+11	1.6E+14		NY.		r	240.0	20.7	30.0
	2015	7.00	0.20	0.55	2808	1.15E+11	3.2F	~1			172.8	210.0	36.3	66.3
	2016							$\langle \rangle$	<u>~</u>			0.0	0.0	66.3
	2017	7.00	0.25	0.55	2808	1.15E+	$\cdot \cdot$		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	.J000	216.0	240.0	51.8	118.1
	2018	7.00	0.28	0.55	2808	1	$\lambda^{\mathcal{V}}$		$\sim 0^{\circ}$	32.3251	411.6	240.0	98.8	216.9
	2019	7.00	0.30	0.55	20-	11	Y	~	2+34	41.5198	566.4	210.0	118.9	335.8
	2020					oY	^ ^	\mathbf{O}				0.0	0.0	335.8
	2021	7.00	0.20	r				2.6	4.006E+34	76.1197	692.3	150.0	103.8	439.7
	2022	7.00	0.27	.1	V		Cr.	571.3	5.390E+34	102.4060	1257.3	220.0	276.6	716.3
8	2023	7.00			Y		_c14	571.3	5.390E+34	102.4060	1257.3	220.0	276.6	992.9
-	2024	7.01	18		1		э.1E+14	571.3	5.390E+34	102.4060	1350.5	220.0	297.1	1290.0
	2025	1				11	5.1E+14	571.3	5.390E+34	102.4060	1350.5	220.0	297.1	1587.1
	2026	7.0⊾				.d0E+11	5.1E+14	571.3	5.390E+34	102.4060	1350.5	220.0	297.1	1884.2
	2027	7.00			~u8	1.80E+11	5.1E+14	571.3	5.390E+34	102.4060	1350.5	220.0	297.1	
	2028	7.00	L		2808	1.80E+11	5.1E+14	571.3	5.390E+34	102.4060	1350.5	220.0	297.1	
	2029	7.00	0.2.	J.25	2808	1.80E+11	5.1E+14	571.3				220.0		
	2030	7.00	0.29	0.25	2808	1.80E+11	5.1E+14	571.3	5.390E+34	102.4060	1350.5	220.0	297.1	3072.6

Preliminary Long Term Predictions


Total Int (fb-1)

CERN

Preliminary Long Term Predictions

CERN	Very Long Terr Higher Ene	rov I HC	
	energy [TeV] e field [T] e coil aperture [mm] ches / beam population [10 ¹¹] transverse normalized er of IPs contribution num total beam a function f	C - parame	
		no	HE-LHC
beam	energy [TeV]	\sim	16.5
dipole	e field [T]		20
dipole	e coil aperture [mm]		40-45
#bund	ches / beam		1404
bunch	population [10 ¹¹]	~	1.29
initial	transverse normalized	3.75	3.75 (x), 1.84 (y)
numb	er of IPs contributin	3	2
maxin	num total beam	0.01	0.01
IP bet	a function	0.55	1.0 (x), 0.43 (y)
full cr	ossing 1 V	285 (9.5 σ _{x.v})	175 (12 σ _{x0})
stored	ossing db left	362	479
SR po		3.6	62.3
longit	uc. damping time [h]	12.9	0.98
event		19	76
peak l	$10^{34} \text{ cm}^{-2} \text{s}^{-1}$	1.0	2.0
beam	lifetime [h]	46	13
t	eted luminositu even 10 h [fh-1]	0.2	

San

HE-LHC – main issues and R&D

- high-field 20-T dipole magnets based on Nb₃Sn, Nb₃AI, and HTS
- high-gradient quadrupole magnets for arc and IR
- fast cycling SC magnets for 1-TeV injector
- emittance control in regime of strong SR damping and IBS
- cryogenic handling of SR heat load (first analysis; looks manageable)
- dynamic vacuum

The work summarized here is the result of work carried out by hundreds if not thousands of scientists, engineers and technicians both employed by CERN and **very importantly by the many institutes which collaborate with CERN.**

It is a great personal pleasure to acknowledge the incredible contributions and dedication of such a wonderful team.

Thank you for your attention