

LHCb Roadmap for $B_s \rightarrow J/\psi\phi$

see arXiv:0912.4179v2 for more details, variations

Luminosity

J/ψ

Spectrometer layout provides excellent momentum resolution

Alignment steadily improving: 221-Performance of the Tracking System at the LHCb Experiment

Forward detector geometry provides muon ID + trigger capabilities at low p_T

For more details on LHCb trigger, see <u>472-LHCb trigger system</u>

(Non-prompt) J/ψ

Non-prompt J/ψ

Kaon ID

Use $\phi \rightarrow K^+K^-$ where one leg is required to have RICH K-ID \Rightarrow use other leg as source of Kaons to determine K-ID efficiency Crucial for flavor tagging. $B_s \rightarrow J/\psi \phi MC$:

$(1 \circ)^2 \circ ($			
$\varepsilon_{\text{tag}}(1-2\omega)^2$ %			
0.76 ± 0.05			
0.38 ± 0.04			
1.25 ± 0.07			
2.39 ± 0.10			
1.09 ± 0.07			
Q_{opp} =3.32 ± 0.11			
<u> </u>			
Qall =6.23 \pm 0.15			

First $B^+ \rightarrow J/\psi K^+$ candidate

Run 69618 Event 12484 bId 1786

Vertex separation is much larger in 3D.

$\int Ldt = O(140/nb)$

 $B^+ \rightarrow J/\psi K^+$

Unbinned likelihood fit of m,t $|\sigma_t$ Expected yield from MC: ~71 events (using LHCb value of $\sigma(b\overline{b})$)

Saturday, July 24, 2010

$\int Ldt = O(140/nb)$

 $B^+ \rightarrow J/\psi K^+$

Unbinned likelihood fit of m,t $|\sigma_t|$

Expected yield from MC: ~71 events (using LHCb value of $\sigma(b\overline{b})$) Proper time resolution: ~1.7x MC, but sufficient compared to $\Delta m_s \sim 17.7/ps$

Saturday, July 24, 2010

∫Ldt = O(140/nb)

 $B^+ \rightarrow J/\psi K^+$

Unbinned likelihood fit of m,t $|\sigma_t$ Expected yield from MC: ~71 events (using LHCb value of $\sigma(b\overline{b})$) Proper time resolution: ~1.7x MC, but sufficient compared to $\Delta m_s \sim 17.7/ps$

$\int Ldt = O(140/nb)$

t (ps)

t (ps)

 $B^+ \rightarrow J/\psi K^+$

∫Ldt = O(140/nb)

∫Ldt = O(140/nb)

Not inconsistent with the MC expectation of ~7 events....

Resolution about 1.7x MC, but, once more, already sufficient compared to $\Delta m_s \sim 17.7/ps$

 $B_s \rightarrow J/\psi \phi$

Summary & Outlook

- LHCb fully operational
- Currently 295 nb⁻¹ collected
- Hope for 0.2 fb⁻¹ by end 2010, and 1 fb⁻¹ by end of 2011
- In O(140 nb⁻¹) :
 - $N(B^+ \rightarrow J/\psi K^+) = 41\pm 8$
 - $N(B^0 \rightarrow J/\psi K^{*0}) = 33 \pm 8$
 - $N(B_s \rightarrow J/\psi \phi) = 7\pm 4$
- Propertime resolution already sufficient for CP measurement
 - Alignment improving with more data
- Exciting & busy times ahead!

Backup

LHCb

Saturday, July 24, 2010

and pile-up!

LHCb running (in this aspect) beyond the nominal scenario Re-use experience from the ongoing LHCb upgrade planning!

$B_s \rightarrow J/\psi \phi MC$: angular resolution

Figure 20: Mistag rate as a function of the B signal transverse momentum. Left: combination of all opposite side taggers in $B_s^0 \rightarrow J/\psi\phi$ events. Center: same side kaon tag in $B_s^0 \rightarrow J/\psi\phi$ events (black, upper box) and superimposed $B_s^0 \rightarrow D_s^-\pi^+$ events (red, lower box). Right: same side pion tag in $B^+ \rightarrow J/\psi K^+$ events.

Figure 21: Mistag distribution for correctly (left) and wrongly (center) muon tagged $B^+ \rightarrow J/\psi(\mu\mu)K^+$ signal events. On the right the dependence of the measured mistag on the probability of mistag is represented. The best fit calibration curve $\omega_{\mu}(\eta_{\mu}) = p0_{\mu} + p1_{\mu}(\eta_{\mu} - \bar{\eta}_{\mu})$ is superimposed.

$B_{s}^{0} \rightarrow J/\psi(\mu\mu)\phi(KK)$				
	$\varepsilon_{\rm tag}(1-2\omega)^2$ %	$arepsilon_{ ext{tag}}\%$	$\omega\%$	
Individual taggers				
μ	0.76 ± 0.05	5.77 ± 0.08	31.9 ± 0.6	
e	0.38 ± 0.04	2.91 ± 0.06	32.0 ± 0.9	
K _{opp}	1.25 ± 0.07	15.06 ± 0.12	35.6 ± 0.4	
K _{same}	2.39 ± 0.10	26.37 ± 0.15	34.9 ± 0.3	
$Q_{\rm vtx}$	1.09 ± 0.07	44.35 ± 0.17	42.1 ± 0.2	
Combination of opposite side taggers only				
cat#1	0.34 ± 0.04	28.18 ± 0.15	44.5 ± 0.3	
$\operatorname{cat} \# 2$	0.51 ± 0.04	6.89 ± 0.08	36.4 ± 0.6	
cat#3	0.68 ± 0.05	4.79 ± 0.07	31.1 ± 0.7	
cat#4	0.89 ± 0.05	3.57 ± 0.06	25.1 ± 0.8	
cat#5	0.90 ± 0.05	2.18 ± 0.05	17.9 ± 0.9	
Average	2.18 ± 0.10	45.61 ± 0.17	39.07 ± 0.24	
Combined	3.32 ± 0.11	45.61 ± 0.17	36.51 ± 0.24	
Combination of all taggers				
Average	4.45 ± 0.14	55.71 ± 0.17	35.88 ± 0.21	
Combined	6.23 ± 0.15	55.71 ± 0.17	33.27 ± 0.21	

Table 15: Results of flavour tagging obtained for $B_s^0 \rightarrow J/\psi \phi$ events passing Level-0, for the individual taggers and for their combination. Average: result from the global tagging decision for all events together. Combined: results after splitting into the 5 categories and summing the effective efficiencies. Uncertainties are statistical.

Semileptonic Asymmetry

$$\phi_s^{\rm SM} = 2 \arg(V_{\rm ts}^* V_{\rm tb}) - 2 \arg(V_{\rm cb} V_{\rm cs}^*) + \delta^{\rm Penguins} = -2\beta_{\rm s} + \delta^{\rm Penguins}$$

$$\phi_{\rm s} = \phi_{\rm s}^{\rm SM} + \phi_{\rm s}^{\Delta} \,, \tag{1}$$

$$\Delta \Gamma_{\rm s} = 2 |\Gamma_{12}^{\rm SM}| \cos(\phi_{\rm s12}^{\rm SM} + \phi_{\rm s}^{\Delta}), \qquad (2)$$

$$a_{\rm fs} = \frac{|\Gamma_{12}^{\rm SM}|}{|M_{12}^{\rm SM}|} \frac{\sin(\phi_{\rm s12}^{\rm SM} + \phi_{\rm s}^{\Delta})}{|\Delta_{\rm s}|} \,. \tag{3}$$

In the above equations, a_{fs} is the flavour specific asymmetry and

$$\phi_{s12}^{SM} = \arg\left(-\frac{M_{12}^{SM}}{\Gamma_{12}^{SM}}\right) \,. \tag{4}$$

In the Standard Model, $\phi_{s12}^{SM} = (3.40^{+1.32}_{-0.77}) \times 10^{-3}$ rad while $2\beta_s = (3.6 \pm 0.2) \times 10^{-2}$ rad.

Semileptonic Asymmetry

LHCb, I fb⁻¹ [thesis R. Lambert]

assumes A^b central value and no NP in B^0

PV resolution

- Vertex resolution
 - Measure resolutions by randomly splitting track sample in two
 - Compare split vertices of equal multiplicity
 - Method validated with MC
- PV resolution (x,y,z) with 25 tracks:
 - Data (15.8, 15.2, 91) μm
 - MC (11.5, 11.3, 57) μm
- Room for improvement: alignment, material description

Saturday, July 24, 2010

Silvia Borghi

Impact Parameter resolution

P

PV

P

- IP resolution:
 - Impact Parameter (IP) is defined as the closest distance of each track to the primary vertex:
 - Measure x and y component of impact parameter
 - Assume all tracks originate from primary interaction point
 - Measure resolution as spread of IP distribution
- IP resolution up to 20 μ m for the highest pt bins
- Room for improvement: alignment, material description

LHCb Event Display

