

Prompt J/ ψ and b \rightarrow J/ ψ X production in pp collisions at $\sqrt{s} = 7$ TeV

G. Passaleva^{a)} On behalf of the LHCb Collaboration a) INFN – Florence - Italy

ICHEP 2010 – Paris – July 22-28, 2010

Introduction I

- J/ ψ produced in abundance at LHC: expect $\sigma(pp \rightarrow X + J/\psi) \approx O(0.1) \text{ mb} \Rightarrow \text{enough statistics to study the}$ production cross sections already with the first LHC data.
- Measurement very important:
 - \star J/ ψ production mechanism not well understood
 - \bigstar b \rightarrow J/ ψX decays fundamental for the LHCb core physics program
- 3 main sources of J/ψ :
 - \star direct production in pp collisions
 - ★ feed down from heavier charmonium states (ψ(2S), $\chi_{c,...}$)
 - \star J/ ψ from b-hadron decay chains

Prompt J/ψ J/ψ from b

Introduction II

• I will discuss the measurement of the production cross section both for prompt J/ψ and for J/ψ from b, namely:

$$\sigma = \frac{N(J/\psi \to \mu^+ \mu^-)}{L \times \varepsilon \times B(J/\psi \to \mu^+ \mu^-)}$$

 Measurements restricted to: 2.5<y ^{J/ψ} <4 0<p_T ^{J/ψ} <10 GeV/c because of the small statistics available

• Results on:

★ $d\sigma/dp_T$ (incl. J/ ψ) in 10 bins of $p_T^{J/\psi}$, 0< $p_T^{J/\psi}$ <10 ★ σ (incl. J/ ψ) ★ σ (J/ ψ from b)

The LHCb experiment

Forward Spectrometer

- Angular acceptance : 15<θ<300 mrad
- Nominal luminosity:
 L = 2 x 10³² cm⁻²s⁻¹

Plenary talk on LHCb: A. Golutvin, 26/07

Performance numbers relevant to J/ψ analysis

Charged tracks Δp/p = 0.35 % - 0.55% (S. Borghi, Track1, 22/07, 11:35, Salle Maillot)

Excellent mass resolution

Muon ID: $\varepsilon(\mu \rightarrow \mu) = 94$ %, mis-ID rate $(\pi \rightarrow \mu) = 1-3$ % (A. Powell, Track1, 22/07, 14:00, Salle Maillot) Vertexing: proper time resolution 30-50 fs

Trigger: 2 levels. LO: hardware, high p_T **particles; HLT: software** (E. Van Herwijnen, Track1, 22/07, Salle Maillot)

July 22, 2010

Cross section measurement

$$\sigma = \frac{N(J/\psi \to \mu^+ \mu^-)}{L \times \varepsilon \times B(J/\psi \to \mu^+ \mu^-)}$$

- N: select $J/\psi \rightarrow \mu^+\mu^-$ decays and extract the n. of signal events from a fit to the invariant mass distribution
- $\varepsilon = \varepsilon_{acc} \times \varepsilon_{rec} \times \varepsilon_{trig}$: taken from MC and extensively cross-checked with data
- Separation of prompt J/ ψ and J/ ψ from b: fit to the pseudo-proper time (t_z) distribution $t_z = \frac{d_z \times M_{J/\psi}}{n}$
- N.B. for the central cross section values ϵ is estimated with simulated J/ ψ with NO polarization. The effect of polarization will be discussed later

Event selection

Data sample

 14.2 nb⁻¹ collected between April and June 2010 with low pile-up conditions Luminosity used for the cross section measurement : (14.15 ± 1.42) nb⁻¹ (Details of the luminosity measurement method given by M. Ferro-Luzzi - Track 1, 22/07, 9:25, Salle Maillot)

Event selection

• 2 muons

- ★ with fully reconstructed tracks (VELO + Tracker)
- ★ identified by the muon system (hits in muon stations inside fields of interest)
- ★ making a good vertex
- ★ p_T > 700 MeV/c
- ★ Mass window for signal definition: ($M_{J/\psi} \pm 390$) MeV/c²
- Trigger LO:
 - ★ single muon, $p_T > 480 \text{ MeV/c}$
- HLT:
 - ★ single muon, $p_T > 1.3$ GeV/c .OR. muon pair with $M_{uu} > 2700$ MeV/c²

Mass fit with Crystal Ball function and 1st order polynomial for background

 $f(x;\mu,\sigma_{\rm M},\alpha,n) = \begin{cases} \frac{\left(\frac{n}{|\alpha|}\right)^n e^{-\frac{1}{2}\alpha^2}}{\left(\frac{n}{|\alpha|} - |\alpha| - \frac{x-\mu}{\sigma_{\rm M}}\right)^n} & \frac{x-\mu}{\sigma_{\rm M}} < -|\alpha| \\ \exp\left(-\frac{1}{2}\left(\frac{x-\mu}{\sigma_{\rm M}}\right)^2\right) & \frac{x-\mu}{\sigma_{\rm M}} > -|\alpha| \end{cases}$

Fit results (2.5<y<4, p_T <10 GeV/c): Signal = 2872 ± 73 S/B = 1.3 Mean = (3088 ± 0.4) MeV/c² σ = (15.0 ± 0.4) MeV/c²

Mass fits in p_T bins

LHCb Preliminary \s = 7 TeV Data L = 14.2 nb⁻¹

July 22, 2010

8

Prompt/delayed separation

- Use pseudo-proper time $\textbf{\textit{t}}_{z}$ to distinguish prompt from B decay-produced J/ψ
- Extract $f_b = fraction of J/\psi$ from b decays with an unbinned maximum likelihood fit to t_z

J/ψ from b component clearly visible

- n_p , n_b , n_{bkg} : number of prompt J/ ψ , J/ ψ from b and background events
- μ , σ_1 , σ_2 , β : mean, resolutions and fraction for the 2 gaussians for signal resolution function
- τ_b : pseudo b life time
- Background from invariant mass sidebands

Statistical errors only

July 22, 2010

 With more statistics (~50 pb⁻¹) can explore a larger phase space and overlap with ATLAS/CMS acceptance This analysis
 LHCb 50 pb⁻¹
 ATLAS/CMS
 G. Passaleva 11

July 22, 2010

- ε_{rec} : (reconstructed J/ ψ) / (J/ ψ in acceptance)
- ε_{trig} : (triggered J/ ψ) / (reconstructed J/ ψ)

Total efficiency

- ε depends strongly on the polarization
- Three polarization scenarios ($\alpha = \lambda_{\theta} = 0, -1, +1$; angular distribution in the helicity reference frame; azimuthal part ignored) considered
- ε evaluated in the 3 polarization cases. Deviation of $\sigma(\alpha = -1, +1)$ wrt $\sigma(\alpha = 0) \Rightarrow$ systematic error

With more statistics, a direct measurement of the polarization with full angular analysis, in different reference frames and in bins of y and p_T is foreseen

July 22, 2010

systematic errors

- Systematic errors mainly coming from the discrepancy data/MC. Dominant contributions from trigger and tracking efficiencies.
- Large systematic uncertainty from luminosity
- The p_T spectrum of J/ ψ from b is not measured (low statistics) \Rightarrow additional systematic errors on σ due to ϵ dependence on p_T

Quantity	Systematic error	Comment
Trigger	2.8 % to 9.4 %	Correlated between bins
Muon identification	2.5%	Correlated between bins
Tracking efficiency	8%	Correlated between bins
Track χ^2	2%	Correlated between bins
Vertexing	1%	Correlated between bins
Bin size	1.3% to 3.9%	Bin dependent
Inter-bin cross-feed	0.5%	Correlated between bins
		(not applied to the total cross section)
Mass fit procedure	3%	Correlated between bins
Loss of events due to the radiative tail	1%	Correlated between bins
$\mathcal{B}(J/\psi \to \mu^+\mu^-)$	1%	Correlated between bins
Luminosity	10%	Correlated between bins
<i>b</i> momentum spectrum	4 %	Applies only to J/ψ from b cross section
b hadronization fractions	2%	Applies only to extrapolation of
		$b\bar{b}$ cross section
$\mathcal{B}(b \to J/\psi X)$	9%	Applies only to extrapolation of
		$b\bar{b}$ cross section
July 22, 2010	ICHEP 2010	G. Passaleva 14

Preliminary results

• σ (incl. J/ ψ , $p_T^{J/\psi} < 10 \text{ GeV/c}$, 2.5 $< y^{J/\psi} < 4$) = (7.65 ± 0.19 ± 1.10 $+0.87_{-1.27}$) μb

• $d\sigma/dp_T$ (incl. J/ ψ , 2.5 < y^{J/ ψ} < 4):

• $\sigma(J/\psi \text{ from b}, p_T^{J/\psi} < 10 \text{ GeV/c}, 2.5 < y^{J/\psi} < 4) = (0.81 \pm 0.06 \pm 0.13) \mu b$

polarization

- Extrapolations with PYTHIA 6.4 (LEP hadronization fractions assumed)
- 1. ¹/₂ production cross section for b or b in LHCb acceptance

$$\frac{\sigma(pp \to H_b X, 2 < \eta(H_b) < 6)}{2} = 84.5 \pm 6.3 \pm 15.6\,\mu\text{b}$$

2. Total bb production cross section

$$\sigma(pp \to b\bar{b}X) = 319 \pm 24 \pm 59\,\mu{\rm b}$$

An independent σ (bb) measurement by LHCb presented by S. Stone (Track 1, 23/07, 10:00, Salle 191) with results in excellent with the above ones. Averaging:

$$\frac{\sigma(pp \to H_bX, 2 < \eta(H_b) < 6)}{2} = 77.4 \pm 4.0 \pm 11.4 \,\mu\text{b}}{\sigma(pp \to b\bar{b}X)} = 292 \pm 15 \pm 43 \,\mu\text{b}.$$
$$\frac{\sigma(pp \to H_bX, 2 < \eta(H_b) < 6)}{2} = 88.3 \pm 4.5 \pm 13.0 \,\mu\text{b}}{\sigma(pp \to b\bar{b}X)} = 333 \pm 17 \pm 49 \,\mu\text{b}.$$

LEP b hadronization fractions

TeVatron b hadronization fractions

July 22, 2010

Conclusions and perspectives

- J/ ψ production cross section measured on 14.2 nb⁻¹ showing an excellent performance of LHCb
- The measurements discussed are very important for the LHCb core physics program (B physics with J/ ψ in final state, tuning of b-hadron spectra in MC, etc.)

With more statistics:

- Aim at a measurement in 5 bins of y (2<y<4.5) and 12 bins of p_T (0<p_T<12GeV/c) with 10% accuracy in each bins (need ~50 pb⁻¹) separating in each bin the prompt and the delayed component
- Extend the analysis to $\psi(2S)$ and other quarkonia
- Measure the polarization with full angular analysis and in bins of y and \textbf{p}_{T}

Thank you!

Back up slides

Pseudo-proper time description

 Describing the t_z distribution with an exponential assumes that the average lifetime of the B-hadron admixture can be well described with a single exponential

July 22, 2010

Background parametrization in t_z fit

Background is described by a gaussian and 3 exponetials (2 for $t_z>0$ and 1 for $t_z<0$)

ICHEP 2010

INFN

Polarization dependence for J/ ψ from b

J/ψ from b cos θ distribution

Hadronization fractions

Species	Z ^o fraction (%)	Tevatron fraction (%)
B-	40.3±0.9	33.3±3.0
B ⁰	40.3±0.9	33.3±3.0
B _s	10.4±0.9	12.1±1.5
Λ_{b}	9.1±1.5	21.4±6.8

• Definitions (α_{LHCb} , $\alpha_{4\pi}$ = extrapolation factors)

$$\frac{\sigma(pp \to H_b X, 2 < \eta(H_b) < 6)}{2} = \alpha_{\text{LHCb}} \frac{\sigma \left(J/\psi \text{ from } b, \ p_{\text{T}} < 10 \text{ GeV}/c, \ 2.5 < y < 4\right)}{2\mathcal{B}(b \to J/\psi X)}$$

 α_{LHCb} = 2.42 (PYTHIA 6.4)

$$\sigma(pp \rightarrow b\bar{b}X) = \alpha_{4\pi} \frac{\sigma(pp \rightarrow H_b X, 2 < \eta(H_b) < 6)}{2}$$

α_{4π} = 3.77 (PYTHIA 6.4)

PRELIMINARY RESULTS

- $\sigma_{bb} (2 < \eta < 6) = (84.5 \pm 6.3 \pm 15.6) \mu b$ (LEP)
- σ_{bb} (2< η <6) = (86.2±6.4±16.0) µb (Tevatron)
- σ_{bb} (319±24±59) μb (LEP)
- σ_{bb} (325±24±60) µb (Tevatron)