

PDF Sensitivity Studies using EW processes

Ronan McNulty University College Dublin

On behalf of the **LHCb** collaboration

Outline

- Measurements sensitive to low x (x<~5x10⁻⁴)
 - W,Z production at LHCb
 - Drell-Yan γ^{*} production of dimuons (to Q²=5 GeV²)
- Unique features of the LHCb Experiment
- First results with LHCb data
- Potential sensitivity to PDFs

Ronan McNulty ICHEP 2010, Paris.

Effect of PDF uncertainties on crosssections

- Regions where the most precise EW tests can be made.
- High rapidity, low mass dimuon production sensitive to gluon PDF.

Different behaviour and uncertainty with order of calculation.

Gluon essentially unconstrained by data below 10^{-4}

DGLAP evolution not trustworthy in this region. Gluon resummation effects. Possibly entering saturation regime.

First data. Analyses using 14.6 nb⁻¹

<u>W->μν</u>

- Requires high transverse momentum muon with little other activity in the event.
- Above 20 GeV, observe 20 candidates.

Ronan McNulty ICHEP 2010, Paris.

First data. Analyses using 37 nb⁻¹

Ζ->μμ

 Requires two high transverse momentum muon with little other activity in the event.

First data. Analyses using 37 nb⁻¹

<u>γ*–>μμ</u>

- Require two isolated muons p_t>1GeV consistent with primary vertex.
- b,c background taken from simulation
- Muon misidentified tracks taken from <u>data</u>: pions and kaons in Minimum Bias triggered event scaled with misidentification probability.

Sample of DY events can be identified with reasonably high purity

How can LHCb help constrain PDFs?

From global fits, PDFs described by a set of orthogonal eigenvectors, which which have a `central' value $\vec{e_0}$, and `uncertainties' $\vec{e_i}$.

$$\frac{d\sigma}{dy}(\delta_1, \delta_2 \dots \delta_N) = \frac{d\sigma}{dy}(\vec{e}_0) + \sum_i^N \delta_i \left\{ \frac{d\sigma}{dy}(\vec{e}_i) - \frac{d\sigma}{dy}(\vec{e}_0) \right\}$$
(where δ is a

(where δ_i is #sigmas along e_i)

Current knowledge of PDFs mapped out by sampling $\delta_{\rm i}$ from unit multinomial distribution.

We have performed pseudo-experiments, generating LHCb data and fitting for δ_i , to see how eigenvector knowledge improves.

Effect on MSTW08, CTEQ6.5, ALEKHIN2002, NNPDF2.0 studied.

Improvement to **MSTW08 PDFs** with 0.1fb-1 of <u>high</u> <u>mass vector bosons</u> at 7TeV

Similar results with CTEQ, NNPDF, Alekhin (Best used to test SM)

Improvement to different **PDF** sets with 0.1fb⁻¹ of <u>low</u> <u>invariant mass</u> muons (10-20GeV) at 7TeV

Ronan McNulty ICHEP 2010, Paris.

Significant improvements possible with modest amount of data

Ronan McNulty ICHEP 2010, Paris.

Summary

- For low luminosity W,Z, PDFs well known.
- Significant improvements to gluon PDF in the near future, probing the previously unexplored, and theoretically interesting region down to x=10⁻⁶.
- First data from LHCb have allowed samples of W,Z and low mass DY to be isolated.