Light quarks on the lattice: methods and results for pion physics

Stefan Schaefer

Humboldt Universität zu Berlin

ICHEP 2010

Outline

Pions on the lattice

Low energy constants of chiral Lagrangian

Lattice QCD algorithms for light quarks

Ideas behind dramatic improvements during the last decade

Low energy effective theory

Physics of pions: chiral symmetry and its breaking

 $SU(N_f) \times SU(N_f) \rightarrow SU_V(N_f)$

► Low-energy phenomena described by effective theory →Chiral Perturbation Theory Weinberg'79 Gasser&Leutwyler'84,'85

Lagrangian for ChPT to LO

$$\mathcal{L}_{0} = \frac{F^{2}}{4} \operatorname{Tr} \left[\partial_{\mu} U \partial^{\mu} U^{T} \right] - \frac{\Sigma}{2} \operatorname{Tr} \left[M (U + U^{T}) \right]$$

- F : pion decay constant
- $\Sigma = -\langle \bar{u} u \rangle$: chiral condensate
- $U = \exp(i/F\pi^k \tau^k)$: Goldstone boson fields
- expansion in quark mass M and momenta

Low energy effective theory

Higher accuracy requires higher orders (given small m_{π} , p)

Lagrangian for chiral perturbation theory to NLO

$$\begin{split} \mathcal{L}_{eff} &= \mathcal{L}_{0} + \mathcal{L}_{1} + \cdots \\ \mathcal{L}_{0} &= \frac{F^{2}}{4} \operatorname{Tr} \left[\partial_{\mu} U \partial^{\mu} U^{T} \right] - \frac{\Sigma}{2} \operatorname{Tr} \left[\mathcal{M} (U + U^{T}) \right] \\ \mathcal{L}_{1} &= \ell_{1} \operatorname{tr} \left[\partial_{\mu} U \partial^{\mu} U^{T} \right]^{2} + \ell_{2} \operatorname{tr} \left[\partial^{\mu} U \partial^{\nu} U^{T} \right] \left[\partial_{\mu} U \partial_{\nu} U^{T} \right] + \cdots \end{split}$$

► At NLO additional constants for $N_f = 2$: ℓ_i , i = 1, ..., 7 $N_f = 3$: L_i , i = 1, ..., 10

Good convergence requires small pion masses.

Physics Goals

Goal:

- Compute low-energy constants from first principles.
- ChPT becomes a predictive framework for low-energy phenomena of strong interactions.
- Verify that chiral symmetry and its spontaneous breaking indeed realized.

Strategy:

- Compute sensitive quantities in ChPT.
- Compare analytic prediction to numerical QCD results.
- \rightarrow Determination of F, Σ , ℓ_i

Matching

Nature

- Full standard model
- Two light quarks
- Strange: light enough?
- Fixed quark masses
- experimental data
 →scattering experiments

Lattice QCD

- pure QCD
- N_f quarks
- variable quark mass
- ► typically not really light → getting there
- variable volume

Challenge for the lattice: quarks close to the chiral limit

Two regimes

All lattice simulations are in finite volume.

- $L \gg 1/m_{\pi} \rightarrow$ systematic errors with $e^{-m_{\pi}L}$
- Large lattices required for $m_\pi
 ightarrow 0$
- Chiral perturbation theory essentially as in infinite volume

$$\partial_\mu \sim p$$
 ; $m \sim p^2$; $1/L \sim p$

► Expansion in momentum p and quark mass m. Good convergence of ChPT↔ expensive simulations

Two regimes

Use volume dependence as predictive tool.

► *ϵ*-regime

- $L \ll 1/m_{\pi}$
- $L \gg 1/\Lambda_{\rm QCD}$, volume not small: 2-3fm boxes
- Chiral perturbation theory needs to be reorganized. \rightarrow expansion in $\frac{1}{(FL)^2}$
- Volume effects are enhanced.
- Mass effects are suppressed.
- ℓ_i enter only at NNLO \rightarrow good for F and Σ , bad for ℓ_i

Two regimes

p-regime

- calculations on "all purpose" configurations
- $V \to \infty$ for $m_{\pi} \to 0$
- finite volume effects are a systematic error
- higher order LECs enter at NLO
- good, if interested in higher LECs

ϵ -regime

- ▶ very light pions needed→ expensive
- finite V used to extract physics
- however, large enough volume required
- only LO LECs even at NLO
- good, if interested in
 F and Σ
- Compare the two complementary approaches
- \rightarrow study of systematic uncertainties
- \rightarrow get the best from both regimes

Lattice QCD

- ▶ Discrete space-time lattice: introduce lattice spacing *a*.
- Non-perturbative regularization of QCD.
- Finite box of size $T \times L^3$.
- Many discretizations: Results agree in for $a \rightarrow 0$.
- Computational method

$$\langle O \rangle = \frac{1}{Z} \int \mathrm{d}U e^{-S[U]} O[U]$$

Evaluate by Monte Carlo integration.

Lattice QCD: requirements

- several fine lattice spacings a: continuum extrapolation
- large volume $L \gg 1/\Lambda_{
 m QCD}$
- ▶ small pion masses $m_{\pi} \lesssim 400 \text{MeV}$ to make contact to ChPT. → some debate about upper bound
- ▶ simulations with $N_f = 2$ (ud), $N_f = 2 + 1$ (uds), $N_f = 2 + 1 + 1$ (udsc) sea quarks

Has become possible during last decade.

Cost of going chiral: Situation 2001

Cost of a simulation (Ukawa Lattice 2001)

$$\operatorname{Cost} = C \left[\frac{\# \operatorname{conf}}{1000} \right] \cdot \left[\frac{m_{\pi}/m_{\rho}}{0.6} \right]^{-6} \cdot \left[\frac{L}{3 \operatorname{fm}} \right]^{5} \cdot \left[\frac{a^{-1}}{2 \operatorname{GeV}} \right]^{7}$$

- $C \approx 2.8$ Tflops year
- $(m_\pi/m_
 ho)_{
 m phys} pprox 0.17$
- At the time $m_{\pi} > 600 \text{MeV}$
 - \rightarrow No comparison to ChPT possible.

Algorithms used at the time "knew" very little about physics.

Ideas behind progress

- Infra-red and ultra-violet physics are different.
 - \rightarrow separate IR and UV modes of Dirac operator
- In pre 2000 algorithms the two were treated equally.

Implementations

- Mass preconditioning (Hasenbusch '01)
 - \rightarrow use heavy quark to split off UV
- ▶ Domain decomposition (Lüscher '04) \rightarrow divide the lattice in small blocks

RHMC (Clark, Kennedy'02)

Cost formula for domain decomposition (Del Debbio et al'07):

	'01 (HMC)	'07 (DD-HMC)	
m _q	m_q^{-3}	m_q^{-1}	
а	a ⁻⁷	a^{-6}	
coeff	C	pprox C/100	

Improvements in solvers

Most costly part of dynamical fermion simulation: Solution of Dirac equation

Deflation (Lüscher'07):

- infrared part of Dirac operator dominated by low-dimensional space
- method of construction of this space
- ▶ slowing down for $m_{\pi} \rightarrow 0$ virtually eliminated

Adaptive Multigrid currently studied by BU based group

almost no critical slowing down

Performance of DD-HMC + Deflation

• virtually no critical slowing down for $m_{\pi} \rightarrow 0$

Plot: M. Lüscher, JHEP 0712:011, 2007 Light sea quarks are possible

Current status *p*-regime

collaboration	fermion	N _f	a [fm]	m_{π} [MeV]
CLS	imp. Wilson	2	0.050.09	250
ETMC	tw. Wilson	2	0.05 0.08	280
		2 + 1 + 1	0.08 0.09	270
JLQCD	overlap	2	0.12	290
		2 + 1	0.11	350
MILC	imp. stagg.	2+1	0.0450.15	177
PACS-CS	imp. Wilson	2 + 1	0.09	135
RBC/UKQCD	domain wall	2 + 1	0.11	331

- many discretizations \rightarrow check universality
- several $a \rightarrow$ continuum extrapolation.
- Similar quark mass range \rightarrow similar systematics.
- Minimal $m_{\pi}L$ varies, as small as 2.
- List not complete.

Extracting low-energy constants

Gell-Mann–Oakes–Renner relation

$$m_\pi^2 \propto m_u + m_d$$

Dependence of pion mass on quark mass $M^2 = \frac{2\Sigma m_q}{F}$

$$m_{\pi}^2 = M^2 \left[1 + rac{1}{2} \log rac{M^2}{\Lambda_3^2} + (ext{higher orders})
ight]$$

For the decay constant

$$F_{\pi} = F \left[1 - rac{M^2}{(4\pi F)^2} \log rac{M^2}{\Lambda_4^2} + (ext{higher orders})
ight]$$

Get F, Σ , $\overline{l}_3 = \log(\frac{\Lambda_3^2}{m_{\pi, phys}^2})$ and $\overline{l}_4 = \log(\frac{\Lambda_4^2}{m_{\pi, phys}^2})$

Extracting low-energy constants: Example

Taken from ETM Collaboration [arXiv:0911.5061] $N_f = 2$, twisted mass fermions, lattice spacing $a(\beta = 3.90) = 0.079$ fm and $a(\beta = 4.05) = 0.063$ fm

Results: F

Ratio of F_{π} at physical m_{π} and in the chiral limit

- SU(2) fits \rightarrow LECs depend on N_f .
- Good agreement between various groups / discretizations.
- No problem with scale determination and renormalization.
- No sizeable effect of strange sea quark.

Results: F

F in physical units

Uncertainties from scale determination and renormalization.

Results: Σ

Two flavor chiral condensate $\Sigma_{\overline{MS}}(2 {
m GeV}) = - \langle ar{u} u
angle$

- (*) = not in continuum limit.
- Discrepancies from different scales/lack of continuum limit.
- Varying renormalization procedures (pert./non-pert.)

Results: $\bar{\ell}_3$

Chiral logarithm from SU(2) ChPT, prominent in GMOR

- Dimensionless quantity.
- Good agreement also between $N_f = 2$ and $N_f = 2 + 1$.
- Lattice has higher precision than pheno=Gasser, Leutwyler'84

Results: $\bar{\ell}_4$

Chiral logarithm from SU(2) ChPT, prominent in F_{π}

pheno=Colangelo, Gasser, Leutwyler'01

Comments

- Overall quite good agreement between different results.
- Not all results in continuum limit.
 - \rightarrow particularly relevant for dimensionful quantities expressed with different scales
- Finite *a* modifies functional form.
- Most of the data shares systematics
 - \rightarrow Pion masses 200MeV500/600MeV applicability of ChPT not clear at upper end \rightarrow future will tell

Current status ϵ -regime: $m_{\pi}L \ll 1$

Need very small pion masses

- JLQCD: fermions with exact chiral symmetry
 - clean
 - computationally challanging
 - one lattice spacing, one (small) volume
- Two groups with (twisted) Wilson quarks. Jansen&Shindler, Hasenfratz, Hoffmann, St.S
 - computationally cheap
 - ► need to deal with potentially large cut-off effects →under control if right action used
 - typically not quite in the ϵ regime

Specialized methods

- Low-mode averaging (DeGrand, St.S.'04, Giusti et al'04)
- Reweighting (Hasenfratz, Hoffmann, St. S.'08)

ϵ -regime

Finite-size scaling approach

- $m_{\pi} \ll \frac{1}{L} \rightarrow$ need very small quark masses.
- ► Typical observables: Current-Current correlation functions
- Expansion in $\frac{1}{(FL)^2} \rightarrow$ need large lattices.

$$\begin{aligned} \frac{1}{L^3} C_P(t) &= \frac{1}{L^3} \int d^3 \mathbf{x} \langle P(x,t) P(0,0) \rangle \\ &= \mathbf{\Sigma}^2 \left(a_P + \frac{1}{(FL)^2} b_P \frac{1}{2} [(\frac{t}{T} - \frac{1}{2})^2 - \frac{1}{12}] \right) \end{aligned}$$

Example

Hasenfratz, Hoffmann, St.S'08 Bär, Necco, St.S'08

- ▶ 24⁴ lattice, $a \approx 0.11$ fm.
- 2 parameters \leftrightarrow 8 correlators
- $\Sigma^{1/3}(\mu = 2 \text{GeV}) = 250(4) \text{MeV}$ F = 87(3)MeV

- ► Good agreement among *e*-regime results.
- ▶ *r*⁰ Sommer scale from force between static quarks.

JS=Jansen, Shindler'09, HHS=Hasenfratz, Hoffmann, Schaefer'08

Further Topics

- ▶ Pion form factor: ETMC, JLQCD, RBC/UKQCD → information about further LECs in particular ℓ₆
- LECs of the $N_f = 3$ Lagrangian.
- ▶ SU(3) vs. $SU(2) \rightarrow$ trust ChPT at strange quark mass?
- Pion scattering length a₀^{l=2}: recent work by NPLQCD and ETMC.
- Low-energy constants from Dirac spectrum
 - \rightarrow Random Matrix Theory
 - \rightarrow Banks-Casher relation (Giusti,Lüscher)
- ChPT including cut-off effects.

▶ ...

Conclusions I

- Light quark physics on the lattice has made drastic progress in last decade.
- ► Algorithms have "learned" about physics (UV/IR separation).
- Light pions are now possible.
- First simulations at physical pion mass (PACS-CS).

Conclusions II

- ► Systematic uncertainties significantly reduced → will get better
- Good agreement in dimensionless quantities: F_{π}/F , ℓ_3 , ℓ_4 .
- Dimensionful quantities need common scale and continuum limit for comparison.
- Near future will bring results with even better control over systematic errors.
- Next: get to small lattice spacing, but issues with critical slowing down.