
Non-universal, Non-anomalous U(1)[´] in Anomaly Mediated SUSY Breaking

Mu-Chun Chen, University of California at Irvine in collaboration with Jinrui Huang, work under preparation

Introduction

- SUSY: solution to gauge hierarchy problem
- SUSY must be broken: sparticles at the LHC
- soft SUSY Lagrangian:

$$\mathcal{L}_{\text{soft}} = -(m^2)^j{}_i\phi^i\phi_j - \left(\frac{1}{6}h^{ijk}\phi_i\phi_j\phi_k + \frac{1}{2}b^{ij}\phi_i\phi_j + \frac{1}{2}M_\alpha\lambda_\alpha\lambda_\alpha + \text{h.c.}\right)$$

- generic models: total number of parameter = 124
- SUSY flavor and SUSY CP problem: soft parameters give additional sources of flavor violation and CP violation
- SUSY breaking mechanisms
 - gravity mediation: mSUGRA B.C.s to avoid large flavor violation
 - gauge mediation: controlling flavor violation, UV sensitive
 - low gravitino mass: severe cosmological constraints

Anomaly Mediated SUSY Breaking

- soft masses generated by conformal anomaly
- RG invariance \Rightarrow UV insensitive

$$M_{i} = m_{3/2} \frac{\beta_{g_{i}}}{g_{i}}$$

$$A_{ijk} = -m_{3/2} \beta_{Y}^{ijk}$$

$$(m_{0}^{2})_{j}^{i} = \frac{1}{2} m_{3/2}^{2} \mu \frac{d}{d\mu} \gamma_{j}^{i}$$

$$b^{ij} = \kappa m_{3/2} \mu^{ij} - m_{3/2} \beta_{\mu}^{ij}$$

sparticle masses depend on low energy dynamics only

- highly predictive: reduction of number of parameters
 - all soft SUSY breaking masses determined by $m_{3/2}$
- natural solution to SUSY flavor and SUSY CP problems
 - RG evolution: contributions to flavor violation magically cancelled
 - no additional CPV phases other than those in the Yukawa matrices and those associated with B term and mu term
- heavier gravitino mass $m_{3/2} \simeq (4\pi)^2 m_{\bar{q}} \simeq 100 \text{ TeV} \implies$ saving thermal leptogenesis

Slepton Mass Problem

• anomalous dimensions for 3rd generation

$$\begin{aligned}
16\pi^{2}\gamma_{H_{1}} &= 3\lambda_{b}^{2} + \lambda_{\tau}^{2} - \frac{3}{2}g_{2}^{2} - \frac{3}{10}g_{1}^{2}, \\
16\pi^{2}\gamma_{H_{2}} &= 3\lambda_{t}^{2} - \frac{3}{2}g_{2}^{2} - \frac{3}{10}g_{1}^{2}, \\
16\pi^{2}\gamma_{L} &= \lambda_{\tau}^{2} - \frac{3}{2}g_{2}^{2} - \frac{3}{10}g_{1}^{2}, \\
16\pi^{2}\gamma_{Q} &= \lambda_{b}^{2} + \lambda_{t}^{2} - \frac{8}{3}g_{3}^{2} - \frac{3}{2}g_{2}^{2} - \frac{1}{30}g_{1}^{2}, \\
16\pi^{2}\gamma_{t^{c}} &= 2\lambda_{t}^{2} - \frac{8}{3}g_{3}^{2} - \frac{8}{15}g_{1}^{2}, \\
16\pi^{2}\gamma_{b^{c}} &= 2\lambda_{b}^{2} - \frac{8}{3}g_{3}^{2} - \frac{2}{15}g_{1}^{2}, \\
16\pi^{2}\gamma_{\tau^{c}} &= 2\lambda_{\tau}^{2} - \frac{6}{5}g_{1}^{2},
\end{aligned}$$

- for 1st & 2nd generations:
 - gauge contributions dominate
 - negative slepton masses: breaking EM
- AMSB in the minimal form is ruled out

Slepton Mass Problem

- Existing solutions:
 - adding common mass² term (mAMSB):

 $(\overline{m}^{2})_{j}^{i} = \frac{1}{2}m_{3/2}^{2}\mu \frac{d}{d\mu}\gamma_{j}^{i} + m_{0}^{2}\delta_{ij}$

not RG invariant, loss UV sensitivity

adding D-term contribution:

I. Jack and D.R.T. Jones (1999)

$$(\overline{m}^2)^i_j = \frac{1}{2}m_{3/2}^2\mu \frac{d}{d\mu}\gamma^i_j + \zeta q_i\delta_{ij}$$

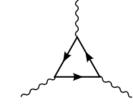
ζ: D-term q_i: charge of chiral superfield

• if no mixed anomalies with respect to the SM:

 $(\overline{m}^2)_j^i$: RG invariance \Rightarrow UV insensitive solution

- U(1)' forbids proton decay arising from
 - dim-4 R-parity operators
 - Planck induced higher dimensional operators

Slepton Mass Problem

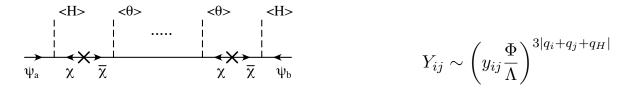

- D-term contribution:
- generation independent U(1)':
 - in the presence of 3 RH neutrinos: $U(1)_{Y}$, $U(1)_{B-L}$
 - no SUSY flavor problem
- generation-dependent U(1)':
 - can explain fermion mass hierarchy and mixing a la Froggatt-Nielsen
 - flavor violation can be induced:
 - high U(1)' scale:
 - flavor violation under control
 - interesting predictions
 - existing solution: anomalous U(1)'
 - with mixed anomaly cancelled by Green-Schwarz mechanism

Anomalous vs Non-anomalous U(1)'

- anomaly cancellations: relating charges of different fermions
 - [U(1)]³ condition generally difficult to solve
- most models utilized anomalous U(1)':
 - mixed anomaly: cancelled by Green-Schwarz mechanism

constraints not as stringent

- [U(1)[´]]³ anomaly: cancelled by exotic fields besides RH neutrinos
- U(1)' broken at fundamental string scale
- earlier claim that U(1)['] has to be anomalous to be compatible with SU(5) while giving rise to realistic fermion mass and mixing patterns ^{Ibanez, Ross, 1994}
- non-anomalous U(1)[´] can be compatible with SUSY SU(5) while giving rise to realistic fermion mass and mixing patterns M.-C.C, D.R.T. Jones, A. Rajaraman, H.B.Yu, 2008
 - no exotics other than 3 RH neutrinos
 - U(1)' also forbids Higgs-mediated proton decay



Solution with Non-universal U(1)

• Superpotential

 $W = Y_u H_u Q u^c + Y_d H_d Q d^c + Y_e H_d L e^c + Y_\nu H_u L \nu^c + Y_{\nu\nu} \Xi \nu^c \nu^c + \mu H_u H_d$

• Yukawa sector: determined by U(1)' charges, flavor structure from FN

suppressed mu term

$$\mu \sim \left(\mu_{ud} \frac{\Phi}{\Lambda}\right)^{3|q_{H_u} + q_{H_d} - 1/3|} \Phi$$

Solution with Non-universal U(1)

sparticle masses: pure AMSB contributions + D-term contributions

$$\begin{split} \bar{m}_Q^2 &= m_Q^2 + \zeta q_{Q_i} \delta_j^i, \\ \bar{m}_{u^c}^2 &= m_{u^c}^2 + \zeta q_{u_i} \delta_j^i, \\ \bar{m}_{d^c}^2 &= m_{d^c}^2 + \zeta q_{d_i} \delta_j^i, \end{split} \quad \begin{split} \bar{m}_L^2 &= m_L^2 + \zeta q_{L_i} \delta_j^i, \\ \bar{m}_e^2 &= m_{d^c}^2 + \zeta q_{d_i} \delta_j^i, \end{split} \quad \begin{split} \bar{m}_L^2 &= m_L^2 + \zeta q_{L_i} \delta_j^i, \\ \bar{m}_e^2 &= m_e^2 + \zeta q_{e_i} \delta_j^i, \end{split} \quad \begin{split} \bar{m}_{H_u}^2 &= m_{H_u}^2 + \zeta q_{H_u}, \\ \bar{m}_e^2 &= m_e^2 + \zeta q_{e_i} \delta_j^i, \end{split}$$

- search for solutions that satisfy:
 - all 6 anomaly cancellation conditions
 - realistic quark masses (6), charged lepton masses (3), neutrino masses and mixing angles (6)
 - electroweak symmetry breaking
 - all squark and slepton masses positive

Anomaly Cancellation Conditions

• 6 anomaly cancellation conditions:

$$\begin{split} [SU(3)]^2 U(1)'_F &: \sum_i [2q_{Q_i} - (-q_{u_i}) - (-q_{d_i})] = 0 , \\ [SU(2)_L]^2 U(1)'_F &: \sum_i [q_{L_i} + 3q_{Q_i}] = 0 , \\ [U(1)_Y]^2 U(1)'_F &: \sum_i \left[2 \times 3 \times \left(\frac{1}{6}\right)^2 q_{Q_i} - 3 \times \left(\frac{2}{3}\right)^2 (-q_{u_i}) - 3 \times \left(-\frac{1}{3}\right)^2 (-q_{d_i}) \right. \\ &\quad + 2 \times \left(-\frac{1}{2}\right)^2 q_{L_i} - (-1)^2 (-q_{e_i}) \right] = 0 , \\ [U(1)'_F]^2 U(1)_Y &: \sum_i \left[2 \times 3 \times \left(\frac{1}{6}\right) q_{Q_i}^2 - 3 \times \left(\frac{2}{3}\right) \times (-q_{u_i})^2 - 3 \times \left(-\frac{1}{3}\right) (-q_{d_i})^2 \right. \\ &\quad + 2 \times \left(-\frac{1}{2}\right) (q_{L_i})^2 - (-1) (-q_{e_i})^2 \right] = 0 , \\ U(1)'_F - \text{gravity} &: \sum_i \left[6q_{Q_i} + 3q_{u_i} + 3q_{d_i} + 2q_{L_i} + q_{e_i} + q_{N_i} \right] = 0 , \\ [U(1)'_F]^3 &: \sum_i \left[3 (2(q_{Q_i})^3 - (-q_{u_i})^3 - (-q_{d_i})^3) + 2(q_{L_i})^3 - (-q_{e_i})^3 - (-q_{N_i})^3 \right] = 0 \end{split}$$

Finding the Solutions

• convenient parametrization

$$\begin{split} q_{Q_1} &= -\frac{1}{3}q_{L_1} - 2a, \\ q_{Q_2} &= -\frac{1}{3}q_{L_2} + a + a', \\ q_{Q_3} &= -\frac{1}{3}q_{L_3} + a - a', \\ q_{u_1} &= -\frac{2}{3}q_{L_1} - q_{e_1} - 2b, \\ q_{u_2} &= -\frac{2}{3}q_{L_2} - q_{e_2} + b + b', \\ q_{u_3} &= -\frac{2}{3}q_{L_3} - q_{e_3} + b - b', \end{split}$$

$$q_{d_1} = \frac{4}{3}q_{L_1} + q_{e_1} - 2c,$$

$$q_{d_2} = \frac{4}{3}q_{L_2} + q_{e_2} + c + c',$$

$$q_{d_3} = \frac{4}{3}q_{L_3} + q_{e_3} + c - c',$$

$$q_{N_1} = -2q_{L_1} - q_{e_1} - 2d,$$

$$q_{N_2} = -2q_{L_2} - q_{e_2} + d + d',$$

$$q_{N_3} = -2q_{L_3} - q_{e_3} + d - d'.$$

Finding the Solutions

- in total: 12 charges for chiral superfields
- further conditions:
 - heavy 3rd generation Yukawa couplings not suppressed + hierarchy

 $\begin{aligned} q_{Q_3} + q_{u_3} + q_{H_u} &= 0 & q_{Q_3} + q_{d_3} + q_{H_d} = 1 & q_{L_3} + q_{e_3} + q_{H_d} = 1 \\ c' &= -a' & b' = -1/2 - a' \end{aligned}$

 mild suppression for 3rd generation neutrino Dirac mass + charged lepton mass hierarchy + maximal atm mixing

 $q_{L_3} + q_{N_3} + q_{H_u} = 2$ $q_{L_2} = q_{L_3}$ $q_{e_2} = q_{e_3} + 2$ $q_{e_1} = q_{e_3} + 3$

- anomaly cancellation conditions further reduce the number of parameters
- in total, two parameters parametrizing class of solutions

Solution (I)

- charges that satisfy all requirements are NOT pretty
- nevertheless, it is remarkable that solutions exist at all

Field	U(1)' charge	Field	U(1)' charge
L_1	$q_{L_1} = 3/2$	Q_1	$q_{Q_1} = 1003/450$
L_2	$q_{L_2} = 1/2$	Q_2	$q_{Q_2} = 1447/225$
L_3	$q_{L_3} = 1/2$	Q_3	$q_{Q_3} = 983/225$
e_1^c	$q_{e_1} = 31228381/1586700$	u_1^c	$q_{u_1} = -21278009/1586700$
e_2^c	$q_{e_2} = 29641681/1586700$	u_2^c	$q_{u_2} = -28164287/1586700$
e_3^c	$q_{e_3} = 26468281/1586700$	u_2^c	$q_{u_3} = -40540547/1586700$
N_1	$q_{N_1} = -31757281/1586700$	d_1^c	$q_{d_1} = 10200251/528900$
N_2	$q_{N_2} = -31757281/1586700$	d_2^c	$q_{d_2} = 548909/21156$
N_3	$q_{N_3} = -31757281/1586700$	d_3^c	$q_{d_3} = 1390561/105780$
H_u	$q_{H_u} = 35724031/1586700$	Φ	$q_{\Phi} = -1/3$
H_d	$q_{H_d} = -27261631/1586700$	[1]	$q_{\Xi} = 28583881/793350$

$$\lambda = \left(\frac{\langle \phi \rangle}{\Lambda}\right)^3 = \left(\frac{\langle \phi' \rangle}{\Lambda}\right)^3 = 0.22$$

$$Y_E \sim \begin{pmatrix} (\lambda)^{|q_{L_1}+q_{e_1}+q_{H_d}|} & (\lambda)^{|q_{L_1}+q_{e_2}+q_{H_d}|} & (\lambda)^{|q_{L_1}+q_{e_3}+q_{H_d}|} \\ (\lambda)^{|q_{L_2}+q_{e_1}+q_{H_d}|} & (\lambda)^{|q_{L_2}+q_{e_2}+q_{H_d}|} & (\lambda)^{|q_{L_3}+q_{e_3}+q_{H_d}|} \\ (\lambda)^{|q_{L_3}+q_{e_1}+q_{H_d}|} & (\lambda)^{|q_{L_3}+q_{e_2}+q_{H_d}|} & (\lambda)^{|q_{L_3}+q_{e_3}+q_{H_d}|} \\ = \begin{pmatrix} (\lambda)^5 & (\lambda)^4 & (\lambda)^2 \\ (\lambda)^4 & (\lambda)^3 & (\lambda)^1 \\ (\lambda)^4 & (\lambda)^3 & (\lambda)^1 \end{pmatrix}$$

$$Y_U \sim \begin{pmatrix} (\lambda)^{|2q_{Q_1}+q_{u_1}+q_{H_u}|} & (\lambda)^{|q_{Q_1}+q_{u_2}+q_{H_u}|} & (\lambda)^{|q_{Q_1}+q_{u_3}+q_{H_u}|} \\ (\lambda)^{|q_{Q_2}+q_{u_1}+q_{H_u}|} & (\lambda)^{|q_{Q_2}+q_{u_2}q_{H_u}|} & (\lambda)^{|q_{Q_2}+q_{u_3}+q_{H_u}|} \\ (\lambda)^{|q_{Q_3}+q_{u_1}+q_{H_u}|} & (\lambda)^{|q_{Q_3}+q_{u_2}+q_{H_u}|} & (\lambda)^{|q_{Q_3}+q_{u_3}+q_{H_u}|} \end{pmatrix}$$
$$= \begin{pmatrix} (\lambda)^{10} & (\lambda)^{\frac{283}{50}} & (\lambda)^{|-\frac{107}{50}|} \\ (\lambda)^{\frac{67}{50}} & (\lambda)^{|-3|} & (\lambda)^{|-\frac{54}{5}|} \\ (\lambda)^{|-\frac{607}{50}|} & (\lambda)^{\frac{39}{5}} & (\lambda)^{0} \end{pmatrix}$$

$$\begin{split} Y_{NN} &\sim \begin{pmatrix} (\lambda)^{|2q_{N_1}|} & (\lambda)^{|q_{N_1}+q_{N_2}|} & (\lambda)^{|q_{N_1}+q_{N_3}|} \\ (\lambda)^{|q_{N_2}+q_{N_1}|} & (\lambda)^{|2q_{N_2}|} & (\lambda)^{|q_{N_2}+q_{N_3}|} \\ (\lambda)^{|q_{N_3}+q_{N_1}|} & (\lambda)^{|q_{N_3}+q_{N_2}|} & (\lambda)^{|2q_{N_3}|} \end{pmatrix} \\ &= \begin{pmatrix} (\lambda)^{|-\frac{31757281}{793350}|} & (\lambda)^{|-\frac{31757281}{793350}|} & (\lambda)^{|-\frac{31757281}{793350}|} \\ (\lambda)^{|-\frac{31757281}{793350}|} & (\lambda)^{|-\frac{31757281}{793350}|} & (\lambda)^{|-\frac{31757281}{793350}|} \\ (\lambda)^{|-\frac{31757281}{793350}|} & (\lambda)^{|-\frac{31757281}{793350}|} & (\lambda)^{|-\frac{31757281}{793350}|} \end{pmatrix} \end{split}$$

$$\begin{split} Y_N &\sim \begin{pmatrix} (\lambda)^{|q_{L_1}+q_{N_1}+q_{H_u}|} & (\lambda)^{|q_{L_1}+q_{N_2}+q_{H_u}|} & (\lambda)^{|q_{L_1}+q_{N_3}+q_{H_u}|} \\ (\lambda)^{|q_{L_2}+q_{N_1}+q_{H_u}|} & (\lambda)^{|q_{L_2}+q_{N_2}+q_{H_u}|} & (\lambda)^{|q_{L_2}+q_{N_3}+q_{H_u}|} \\ (\lambda)^{|q_{L_3}+q_{N_1}+q_{H_u}|} & (\lambda)^{|q_{L_3}+q_{N_2}+q_{H_u}|} & (\lambda)^{|q_{L_3}+q_{N_3}+q_{H_u}|} \end{pmatrix} \\ &= \begin{pmatrix} (\lambda)^3 & (\lambda)^3 & (\lambda)^3 \\ (\lambda)^2 & (\lambda)^2 & (\lambda)^2 \\ (\lambda)^2 & (\lambda)^2 & (\lambda)^2 \end{pmatrix} \end{split}$$

$$\begin{split} Y_D &\sim \begin{pmatrix} (\lambda)^{|q_{Q_1}+q_{d_1}+q_{H_d}|} & (\lambda)^{|q_{Q_1}+q_{d_2}+q_{H_d}|} & (\lambda)^{|q_{Q_1}+q_{d_3}+q_{H_d}|} \\ (\lambda)^{|q_{Q_2}+q_{d_1}+q_{H_d}|} & (\lambda)^{|q_{Q_2}+q_{d_2}+q_{H_d}|} & (\lambda)^{|q_{Q_2}+q_{d_3}+q_{H_d}|} \\ (\lambda)^{|q_{Q_3}+q_{d_1}+q_{H_d}|} & (\lambda)^{|q_{Q_3}+q_{d_2}+q_{H_d}|} & (\lambda)^{|q_{Q_3}+q_{d_3}+q_{H_d}|} \end{pmatrix} \\ &= \begin{pmatrix} (\lambda)^5 & (\lambda)^{\frac{583}{50}} & (\lambda)^{|-\frac{57}{50}|} \\ (\lambda)^{|-\frac{183}{50}|} & (\lambda)^3 & (\lambda)^{|-\frac{49}{5}|} \\ (\lambda)^{\frac{357}{50}} & (\lambda)^{\frac{69}{5}} & (\lambda)^1 \end{pmatrix} \end{split}$$

Resulting Yukawa Sector

Predicted Sparticle Spectrum (I)

• SOFTSUSY 3.0 $\zeta = 1.5 \times (100 \text{ GeV})^2$ $\tan \beta = 10$ $sign(\mu) = -1$

Field	Mass (GeV)	Field	Mass (GeV)
<u>h</u> 0	115	\tilde{c}_R	754
H0	212	\widetilde{s}_L	747
A0	212	\tilde{s}_R	1014
H+	227	\tilde{t}_1	364
\widetilde{g}	880	$ ilde{t}_2$	780
χ_1	134	\tilde{b}_1	744
χ_2	362	\tilde{b}_2	905
χ_3	509	\widetilde{e}_L	324
χ_4	517	\tilde{e}_R	247
$\begin{array}{c} \chi_1^{\pm} \\ \chi_2^{\pm} \end{array}$	134	$ ilde{\mu}_L$	300
χ_2^{\pm}	516	$ ilde{\mu}_R$	214
$ ilde{u}_L$	825	$ ilde{ au}_1$	112
$ ilde{u}_R$	796	$ ilde{ au}_2$	300
\widetilde{d}_L	829	$\tilde{\nu}_{eL}$	314
$ ilde{d}_R$	<mark>963</mark>	$\tilde{\nu}_{\mu L}$	289
\widetilde{c}_L	743	$\tilde{\nu}_{ au L}$	287

Solution (II)

- U(1)_Y breaking at EW scale : no D term contribution associated with U(1)_Y at GUT scale
- RG induced U(1)' U(1)_Y mixing
- non-zero D-term contribution associated with U(1)[´] due to RG running
- allowing small negative lepton charges

Field	U(1)' charge	Field	U(1)' charge
L_1	$q_{L_1} = 1/2$	Q_1	$q_{Q_1} = 1003/450$
L_2	$q_{L_2} = -1/2$	Q_2	$q_{Q_2} = -1447/225$
L_3	$q_{L_3} = -1/2$	Q_3	$q_{Q_3} = 983/225$
e_1^c	$q_{e_1} = 34401781/1586700$	u_1^c	$q_{u_1} = -23393609/1586700$
e_2^c	$q_{e_2} = 32815081/1586700$	u_2^c	$q_{u_2} = -30279887/1586700$
e_3^c	$q_{e_3} = 29641681/1586700$	u_2^c	$q_{u_3} = -42656147/1586700$
N_1	$q_{N_1} = -31757281/1586700$	d_1^c	$q_{d_1} = 3517617/176300$
N_2	$q_{N_2} = -31757281/1586700$	d_2^c	$q_{d_2} = 187671/7052$
N_3	$q_{N_3} = -31757281/1586700$	d_3^c	$q_{d_3} = 487027/35260$
H_u	$q_{H_u} = 35724031/1586700$	Φ	$q_{\Phi} = -1/3$
H_d	$q_{H_d} = -27261631/1586700$	[1]	$q_{\Xi} = 28583881/793350$

Predicted Sparticle Spectrum (II)

• SOFTSUSY 3.0 $\zeta = 1.5 \times (100 GeV)^2$ $\tan\beta=10$ $sign(\mu) = -1$

Field	mass (GeV)	Field	mass (GeV)
h0	115	$ ilde{c}_R$	748
H0	251	\widetilde{s}_L	748
A0	251	\tilde{s}_R	1016
H+	264	\tilde{t}_1	356
$ ilde{g}$	880	\tilde{t}_2	782
χ_1	134	\tilde{b}_1	747
χ_2	362	\tilde{b}_2	908
χ_3	512	$ ilde{e}_L$	313
χ_4	520	\tilde{e}_R	274
χ_1^{\pm}	134	$ ilde{\mu}_L$	288
$\frac{\chi_1^{\pm}}{\chi_2^{\pm}}$	518	$\tilde{\mu}_R$	246
$ ilde{u}_L$	827	$ ilde{ au}_1$	163
\tilde{u}_R	790	$ ilde{ au}_2$	289
\widetilde{d}_L	830	$\tilde{\nu}_{e_L}$	302
$ ilde{d}_R$	966	$\tilde{\nu}_{\mu L}$	276
\widetilde{c}_L	744	$\tilde{\nu}_{\tau_L}$	275

Conclusions

- AMSB: UV insensitive \Rightarrow high predictivity
 - mAMSB: negative slepton masses
- solving the slepton mass problem with addition of D terms: preserve UV insensitivity
- non-anomalous U(1)': highly constrained model
- generation dependent U(1)': can explain fermion mass hierarchy and mixing
- solutions exist, though charges are not simple