Performance of the MEG detector to search for $\mu^+ \rightarrow e^+\gamma$ decays at PSI

Toshiyuki Iwamoto, On behalf of the MEG Collaboration

ICEPP, the University of Tokyo

ICHEP 2010 Paris, France, 22-28/July/2010

Outline

- Motivation
- Signal and Background
- MEG Experiment
- MEG Detectors
 - Liquid xenon photon detector
 - Positron spectrometer
- Calibration methods for physics analysis
- Performance in 2009
- Plan and prospects

Motivation

- In the standard Model, even if taking into account the neutrino mass, the charged lepton flavor violation(LFV) is predicted to be tiny, ~10⁻⁵⁰, and the current experimental bound is set by MEGA
 - Br(μ→eγ) < 1.2 x 10⁻¹¹
- New physics like SUSY-GUT, SUSYseesaw predicts measurable LFV just below the current limit
- Discovery of charged LFV is a clear evidence of physics beyond the Standard Model
- MEG goal : Br($\mu \rightarrow e\gamma$) ~ a few x 10⁻¹³
- Real chance to discover new physics

Signal and Background

Good detector performance is essential (especially, $E\gamma$) High rate e^+ measurement with intense $\mu\,$ beam Pileup rejection is necessary

24/July/2010

MEG Experiment

1.3MW most intense proton accelerator at PSI in Switzerland

DC muon beam $3x10^7 \mu/s$ (possible up to $\sim 1 \times 10^8 \mu/s$)

DC beam is suitable to reduce accidental background

- High precision low mass positron spectrometer
 - SC magnet and low mass drift chamber, timing counter
- High performance photon detector
 - 900 liter liquid xenon + 846 PMTs
- Waveforms of all detectors are recorded by waveform digitizer

- 1999 a proposal to PSI Detector R&D
- 2007 all detectors ready
- 2008 3 month physics data 2009 2 month physics data

ICHEP July 22-28, 2010, Palais des Congres, Paris

24/July/2010

Liquid Xenon Detector

- 900 liter liquid xenon
- 846 2" PMTs (Hamamatsu R9869)
 - immersed in LXe directly
- Good uniformity (homogeneous, liquid)
- High light output (~75% of Nal)
- Short decay time (45ns)
- High density (3g/cm³)
- Short scintillation wavelength ~ 175nm
 - Quartz window for PMT
- Low temperature 165K
 - pulse tube cryocooler developed by KEK
- Purification to remove H_2O , O_2 , N_2 etc. < 10ppb

Calibration and Monitoring

- PMT gain monitored by LED, QE by $\boldsymbol{\alpha}$
- Light yield monitoring (CW, CR, AmBe etc.)
- Cockcroft-Walton proton accelerator
 - 17.6MeV γ by Li(p, γ)Be reaction
 - Light yield monitoring & σ_{F} at 17.6MeV

2008 physics run and shutdown: gaseous purification to increase light yield

Light yield became as much as expected And decay time of γ waveform changed

2009 physics run: no purification

Light yield monitoring: < 1% level

Positron spectrometer

- SC magnet produces special gradient magnetic field, 1.27(at z=0) ~0.49Tesla
 - To sweep out low momentum e⁺
- Timing counter (T_{e} , σ_{Te} <50ps)
 - Plastic scintillator + fine-mesh PMTs
 - Scintillating fiber + APD

- 16 segmented chambers radially
- Position resolution ~ 200μm(r), 500μm(z)
- Momentum resolution ~ 1%
- Low material budget (low multiple scattering, low γ background)

Toshiyuki Iwamoto 8

Drift chamber

• 2008

- Discharge problem reduced e⁺ detection efficiency and resolution for positron measurement
 - $\epsilon \sim 14\%(\sim 1/3), \sigma_{_{\!\!E}}, \sigma_{_{\!\!B}}$ were worse
- The problem was long term exposure to helium, fixed before physics run in 2009
- 2009
 - e⁺ detection efficiency(30~40%, including TC matching) and resolutions improved

Calibrations for physics analysis

24/July/2010

ICHEP July 22-28, 2010, Palais des Congres, Paris

Toshiyuki Iwamoto 10

CEX calibration ($E_{\gamma}, T_{\gamma}, XY_{\gamma}$)

- $\pi p \rightarrow \pi^0 n \rightarrow \gamma \gamma n$ (CEX reaction)
 - 55, 83MeV γs are available once backto-back photons are selected
 - Energy close to our signal (52.8MeV)
- Tagging detector
 - Nal + APD array
- LH2 target

- Energy, timing, and position resolution
 - 2.1%(depth>2cm), >68ps, 5mm(XY),
 6mm(depth)
- Position dependence by moving Nal
- Signal response function
- γ efficiency: 58%

Positron resolution

- Resolution and signal response can be extracted from residuals of two turn tracks
 - Momentum resolution
 - $\sigma_{_{E}} \sim 0.74\%$ core
 - Angle resolution
 - $\sigma_{_{\phi}} \sim 7.1 \text{mrad} \text{ (core)}$
 - $\sigma_{_{\!\!\!\!\theta}} \sim 11.2mrad$
- Background spectrum
 - Michel spectrum fit smeared by detector resolution
 - Double Gaussian plus acceptance

Radiative muon decay (T_{ev})

- Relative timing resolution can be estimated directly by physics data (RMD)
 - Coincident, not back-to-back, γ low energy
 - $\sigma_{\text{Te}\gamma} \text{ consists of each detector} \\ \text{resolution, tracking ambiguity etc.}$
 - Good test to detect $\mu \rightarrow e\gamma$ events, and possible to measure $\sigma_{Te^{\gamma}}$ directly
 - Can be also used to check overall detection efficiency

-
$$\sigma_{_{Te \gamma}} \sim 142 ps (core)$$

Relative angle ($\theta_{e\gamma}$, $\phi_{e\gamma}$)

- Relative angle resolution is combination of each detector resolution
- Xenon detector position resolution
 - x,y : 5mm
 - Depth: 6mm
- In total,
 - $\theta_{e\gamma} \sim 14.7 \text{mrad}$ - $\Phi_{e\gamma} \sim 12.7 \text{mrad}$

- Positron angle resolution
 - θ: 11.2mrad
 - φ: 7.1mrad (core)
 - Vertex resolution on the target
 - Extrapolation from the track
 - Resolution by target hole
 - R: 3.3mm
 - Z: 3.4mm

Performance

	2008	2009 (preliminary)
Gamma Energy (%)	2.0 (w>2cm)	2.1 (w>2cm)
Gamma Timing (psec)	80	>67
Gamma Position (mm)	5(u,v)/6(w)	←
Gamma Efficiency (%)	63	58
e⁺ Timing (psec)	<125	÷
e⁺ Momentum (%)	1.6	0.74(core)
e⁺ efficiency (%)	14	30~40%
e⁺ angle (mrad)	10(φ)/18(θ)	7.1(φ core)/11.2(θ)
e⁺ - gamma timing (psec)	148	142(core)
Muon Decay Point (mm)	3.2(R)/4.5(Z)	3.3(R)/3.4(Z)
Trigger efficiency (%)	66	83.5
Stopping Muon Rate (sec ¹)	3x10 ⁷	2.9x10 ⁷ (300μ m)
DAQ time / Real time (days)	48/78	35/43
Sensitivity	1.3x10 ⁻¹¹	6.1x10 ⁻²
BR upper limit (obtained)	2.8x10 ⁻¹¹	1.5x10 ⁻¹¹

- In 2008, sensitivity was 1.3x10⁻¹¹, and our result was the BR UL 2.8x10⁻¹¹ (90%C.L.)
- In 2009, our sensitivity reached 6.1x10⁻¹², and the BR UL was 1.5x10⁻¹¹ (90%C.L., these numbers are preliminary).

R. Sawada: 23rd 9:30 physics result

A. Baldini: 27th 15:30 plenary talk "Rare lepton and K-meson decays "

Prospects

- Possible improvements
 - Improvement of synchronization of waveform digitizer (DRS4) improves σ₁
 - Possible better calibration with monochromatic positron beam and improve positron tracking
 - Noise reduction and electronics modification for DC
 - Refinement in calorimeter analysis
- 3 years physics data (2010-2012)
 - Sensitivity will reach our goal, a few x 10⁻¹³
 - Each detector performance could be improved further!

	2010 (preliminary)
Gamma Energy (%)	1.5 (w>2cm)
Gamma Timing (psec)	67
Gamma Position (mm)	5(u,v)/6(w)
e⁺ Timing (psec)	90
e ⁺ Momentum (%)	0.7
e⁺ angle (mrad)	8(φ)/8(θ)
e⁺ - gamma timing (psec)	120
Muon Decay Point (mm)	1.4(R)/2.5(Z)
Stopping Muon Rate (sec ⁻¹)	3x10 ⁷
DAQ time / Real time (days)	95/117
Sensitivity	2.0x10 ⁻²
BR upper limit	-

Toshiyuki Iwamoto 16

Summary

- MEG detector has started operation since 2007, and physics data have been taken in 2008 and 2009.
- Many calibration & monitoring methods have been established to check our detector performance.
- Our result to search for lepton flavor violating $\mu \rightarrow e\gamma$ decay is the branching ratio upper limit 1.5x10⁻¹¹ (90%C.L., preliminary) based on 2009 data.
- We will have three years data taking(2010-2012) to reach our sensitivity, a few x 10⁻¹³. Improvement of our detector performance is the most important for us.

DAQ and trigger

- All waveforms are taken for all detectors
 - Essential for us to remove pileup events
 - 1.6GHz waveform digitizer for LXe, TC
 - 0.8GHz waveform digitizer for DC
- MEG trigger
 - LXe total charge & TC total charge
 - Direction match & timing coincidence
 - 6Hz during physics run

Improve Resolutions, contd.

- New Calibration Source will be implemented.
- Using Mott-Scatt. (coherent elastic) on light nuclei.
- "Variable / Monochromatic " e⁺ is available.
- Momentum Calibration and Resolution Understanding will be improved.

Hajime NISHIGUCHI (KEK)

"MEG2009 陽電子スペクトロメータの改良"

JPS-Meeting, 20-23/Mar./2010, Okayama University