

From the KM ansatz to the search of New Physics in ΔF=2 FCNC

Stéphane T'JAMPENS on behalf of the CKMfitter group

LAPP (CNRS/IN2P3 et Université de Savoie)

CKM Matrix

In SM, weak-charged transitions mix quarks of different generations

- CKM matrix: free parameters determined experimentally
 - Once we assume unitarity, the CKM matrix can be completely determined using only tree-level CC amplitudes: $\Gamma\propto |V_{_{II}}|^2$
 - The only CKM elements we cannot access via tree-level processes are V_{ts} and V_{td}.

Four unknowns using a <u>unitary</u> Wolfenstein parametrization \rightarrow Unitarity-exact to all order in λ and phase-convention independent :

Charles *et al*. EPJC **41**, 1 (2005)

$$\lambda^{2} = \frac{|V_{us}|^{2}}{|V_{ud}|^{2} + |V_{us}|^{2}}, \quad A^{2}\lambda^{4} = \frac{|V_{cb}|^{2}}{|V_{ud}|^{2} + |V_{us}|^{2}}, \quad \overline{\rho} + i\,\overline{\eta} = -\frac{V_{ud}\,V_{ub}^{*}}{|V_{cd}\,V_{cb}^{*}}$$

KM ansatz (1973): one irreducible phase with 3 families only source of CP violation in the SM

Kobayashi & Maskawa, Prog.Theor.Phys.49 (1973) 652 Cited 6032 times (SPIRES)

Inputs

117

NEW

Use Frequentist significance testing to build statistical significance (p-value) functions from which estimates and confidence intervals are obtained; test statistic=likelihood-ratio test. Dedicated Rfit scheme for the treatment of theoretical systematics.

data = weak \otimes QCD \implies Need for hadronic inputs (often lattice)

$ V_{ud} $	superallowed β decays
$ V_{us} $	$K_{\ell 3}$ (Flavianet)
ϵ_{K}	PDG 08
$ V_{ub} $	inclusive and exclusive
$ V_{cb} $	inclusive and exclusive
Δm_d	last WA B_d - \overline{B}_d mixing
Δm_s	last WA B_s - \overline{B}_s mixing
eta	last WA $J/\psi K^{(*)}$
α	last WA $\pi\pi, \rho\pi, \rho\rho$
γ	last WA $B ightarrow D^{(*)} K^{(*)}$
$B \rightarrow \tau \nu$	$(1.68 \pm 0.31) \cdot 10^{-4}$

 $\begin{array}{l} \mathsf{PRC79,\ 055502\ (2009)} \\ f_+(0) = 0.963 \pm 0.003 \pm 0.005 \\ \hat{B}_K = 0.723 \pm 0.004 \pm 0.067 \\ |V_{ub}| \cdot 10^3 = 3.92 \pm 0.09 \pm 0.45 \\ |V_{cb}| \cdot 10^3 = 40.89 \pm 0.38 \pm 0.59 \\ B_{B_s}/B_{B_d} = 1.05 \pm 0.01 \pm 0.03 \\ B_{B_s} = 1.28 \pm 0.02 \pm 0.03 \end{array}$

isospin GLW/ADS/GGSZ $f_{B_s}/f_{B_d} = 1.199 \pm 0.008 \pm 0.023$ $f_{B_s} = 228 \pm 3 \pm 17$ MeV

Inputs: γ

- GLW : D ° decays into CP eigenstate
- ADS : D^{0} decays to $K^{-}\pi^{+}$ (fav.) and $K^{+}\pi^{-}$ (sup.)
- GGSZ : D° decays to $K_{s}\pi^{+}\pi^{-}$ (interference in Dalitz plot)

All methods fit simultaneously:

 γ , $r_{\rm B}$ and δ (different $r_{\rm B}$ and δ)

 $\sigma_{\!_{\gamma}} \text{depends}$ significantly on the value of $r_{_B}$

Coverage-adjusted 1D p-value function for γ : 71^{+21}_{-25} (deg)

Without coverage adjustment: 71_{-17}^{+11} (deg)

GGSZ: arXiv:1005.1096 ADS: arXiv:1006.4241 GLW: arXiv:1007.0504

GGSZ: arXiv:1003.3360

1.0

0.8

0.6

0.4

0.2

0.0

- CL

JEV

Inputs: B→тv

- helicity-suppressed annihilation decay sensitive to $f_B \times |V_{ub}|$
- Sensitive to charged Higgs replacing the *W* propagator

	tag	BF(→τν)[10 ⁻⁴]	
	SL (459M)	1.70±0.82	
	Had (467M)	1.80±0.61 NE	ΞW
	Average	1.76±0.49	
BELLE	SL (657M)	1.54±0.48 NE	ΞW
	Had (449M)	1.79±0.71	
	Average	1.62±0.40	
World Average		1.68±0.31	

Prediction from global CKM fit:

BF $(B^+ \to \tau^+ v_{\tau}) = (0.763^{+0.114}_{-0.061}) \times 10^{-4}$

 $\mathsf{BR}(B^{+} \to \tau^{+} \nu) = \frac{G_{\mathsf{F}}^{2} m_{\mathsf{B}} \tau_{\mathsf{B}}}{8\pi} m_{\tau}^{2} \left(1 - \frac{m_{\tau}^{2}}{m_{\mathsf{B}}^{2}}\right)^{2} \left|\mathbf{f}_{\mathsf{B}}^{2}\right| \left|\mathbf{V}_{\mathsf{ub}}\right|^{2}$

KM ansatz: tested to be dominant source of CPV at the EW scale

Global Fit results

Wolfenstein parameters:		(relative precision: 2.5%, 0.4%, 17% and 5%)			
$A = 0.812^{+0.013}_{-0.027}$	$\lambda = 0.22543$	± 0.00077	$\bar{\rho} = 0.144 \pm 0.025$	$\bar{\eta} = 0.342^{+0.016}_{-0.015}$	

Sides and angles:

$R_u = 0.371_{-0.013}^{+0.015}$ $R_t = 0.922_{-0.026}^{+0.025}$	$\alpha = (91.0 \pm 3.9)^{\circ}$	$\beta = (21.76^{+0.92}_{-0.82})^{\circ}$	$\gamma = (67.2 \pm 3.9)^{\circ}$
---	-----------------------------------	---	-----------------------------------

B_s system

$$\beta_{s} = (1.041^{+0.050}_{-0.048}) \circ BF(B_{s} \rightarrow \mu \mu) [10^{-9}] = 3.073^{+0.070}_{-0.190}$$

All measurements consistent with their predictions within $\pm 1\sigma$ except sin2 β : 2.6 σ and B \rightarrow TV: 2.8 σ

7

A closer look at the discrepancies

Sin2 β and B $\rightarrow \tau v$ discrepancies

- The combination sin2 β and B $\rightarrow \tau v$ favors 2 solutions in contradictions with other inputs.
- One cannot accommodate both inputs simultaneously in the global fit.

Lattice QCD

2HDM

$$\frac{\mathcal{B}[M \to l\nu]}{\mathcal{B}[M \to l\nu]_{\rm SM}} = (1 + r_H)^2 \qquad r_H = \left(\frac{m_{q_u} - m_{q_d}\tan^2\beta}{m_{q_u} + m_{q_d}}\right) \left(\frac{m_M}{m_{H^+}}\right)^2 \quad B^+ \left\{\frac{\bar{b}}{m_{q_u}} + \frac{\bar{b}}{m_{q_u}}\right\}$$

If perfect agreement SM-data, two distinct solutions in 2HDM(II)

- decoupling : $r_H = 0$ ($m_{H^+} \rightarrow \infty$, tan β small)
- fine-tuned : $r_H = -2$ (linear correlation between m_{H^+} and large $\tan \beta$, depends on meson mass)

Deschamps et al. ArXiv:0907.5135 [hep-ph]

H⁺

 $BF(B \rightarrow \tau v)$ meas. favors fine-tuned solution

Fine-tuned solution ruled out at 95% CL by other leptonic+semileptonic observables

Bounds on NP in $\Delta F=2$ FCNC

Neutral-B Mixing and New Physics

Nierste&Lenz, JHEP 706 (2007) 72

Observables to determine them:

- Mass and width difference: $\Delta m_q = M_H^q M_L^q \simeq 2 |M_{12}^q|$, $\Delta \Gamma_q = \Gamma_L^q \Gamma_H^q \simeq 2 |\Gamma_{12}^q| \cos(\phi_q)$
- CP Asymmetry in flavor-specific B decays: $A_{SL}^{q} = \left| \frac{\Gamma_{12}^{q}}{M_{12}^{q}} \right| \sin(\phi_{q}) = \frac{\Delta \Gamma_{q}}{\Delta m_{q}} \tan(\phi_{q})$

Standard Model:

- M₁₂ from dispersive part of the box, only internal t relevant
- Γ₁₂ from absorptive part of the box, only c,u contribute (u's are negligible).
 Γ₁₂ is a CKM-favored tree-level effect associated with final states containing a (cc) pair.

New physics:

- Γ_{12} can barely be affected, stems from tree-level decays
- M₁₂ is very sensitive to virtual effects of new heavy particles

Generic New Physics in B_a Mixing: Assumptions

Assume that NP only affects short distance physics in $\Delta B = 2$: M_{12}

Model-independent param. with a complex parameter Δ_{a} through:

JHEP 706 (2007) 72 $M_{12}^{q} = M_{12}^{SM, q} \cdot \Delta_{q}$

Nierste&Lenz,

In the SM, $\Delta_{a} = 1$.

 \rightarrow To identify or constrain new physics: measure both the magnitude and phase of M₁₂

Bounds from the B_a sector

Still sizable NP contribution possible: ~40%

Bounds from the ${\rm B}_{\rm s}$ sector

New CDF (5.2 fb⁻¹) meas. of $(\Delta\Gamma_s, \Phi_s)$ not used yet. Waiting for the official Tevatron average

Still 1.3 σ discrepancy between the NP in M₁₂ fit prediction: A_{SL}(NP)(meas. not in fit) = -0.0041±0.0019 and the measurement A_{SI} (WA w/ new DØ)=-0.0085±0.0028.

Conclusion

KM mechanism at work at the EW scale.

Unitarity Triangle:

- Overall consistency at 2σ level
- Ongoing discrepancy between sin2 β and B $\rightarrow \tau v \rightarrow$ Super Flavor Factory

New Physics in $\Delta F=2$ mixing:

- The discrepancy $B \rightarrow \tau v$ vs sin2 β can be accommodated by a new CPV phase in the B_d mixing, in agreement with the latest $A_{s_1}(D\emptyset)$ measurement.
- Still a lot of room for NP in the B, even with the latest CDF measurement of Φ_{i}

Precision flavor physics: unraveling the flavor structure of New Physics

- Will require a second "quantum jump": going from O(1) to O(0.1) precision is not the same as going from O(0.1) to O(0.01). Many assumptions will need to be revisited.
- An average representing a consensus of the lattice community will be mandatory ("HFAG lattice?").

Let's check that any (so long awaited) deviation from the SM is a true one and let's hope that the next decade will be even more successful than the B-factory decade.

BACKUP SLIDES

Digression: a bit of history

Digression: a bit of history

Sin2 β and B \rightarrow tv discrepancies

2HDM

22

Prediction of Φ_{s} from the fit

Bounds from the B_d sector

24

Bounds from the ${\rm B}_{\rm s}$ sector

