From the KM ansatz to the search of New Physics in $\triangle F=2$ FCNC

Stéphane T'JAMPENS on behalf of the CKMfitter group

LAPP (CNRS/IN2P3 et Université de Savoie)

CKM Matrix

In SM, weak-charged transitions mix quarks of different generations
4. CKM matrix: free parameters determined experimentally

- Once we assume unitarity, the CKM matrix can be completely determined using only tree-level CC amplitudes: $\Gamma \propto\left|\mathrm{V}_{\mathrm{ij}}\right|^{2}$
- The only CKM elements we cannot access via tree-level processes are V_{ts} and V_{td}.

Four unknowns using a unitary Wolfenstein parametrization
\rightarrow Unitarity-exact to all order in λ and phase-convention independent :

$$
\lambda^{2}=\frac{\left|V_{u s}\right|^{2}}{\left|V_{u d}\right|^{2}+\left|V_{u s}\right|^{2}}, \quad A^{2} \lambda^{4}=\frac{\left|V_{c b}\right|^{2}}{\left|V_{u d}\right|^{2}+\left|V_{u s}\right|^{2}}, \quad \bar{\rho}+i \bar{\eta}=-\frac{V_{u d} V_{u b}^{*}}{V_{c d} V_{c b}^{*}}
$$

KM ansatz (1973): one irreducible phase with 3 families 4 only source of CP violation in the SM

[^0]
Inputs

> Use Frequentist significance testing to build statistical significance (p-value) functions from which estimates and confidence intervals are obtained; test statistic=likelihood-ratio test. Dedicated Rfit scheme for the treatment of theoretical systematics.
data $=$ weak \otimes QCD $\quad \Longrightarrow$ Need for hadronic inputs (often lattice)

$V_{u d} \mid$	superallowed β decays	PRC79, 055502 (2009)
$V_{u s}$ \|	$K_{\ell 3}$ (Flavianet)	$f_{+}(0)=0.963 \pm 0.003 \pm 0.005$
ϵ_{K}	PDG 08	$\hat{B}_{K}=0.723 \pm 0.004 \pm 0.067$
$V_{u b} \mid$	inclusive and exclusive	$\left\|V_{u b}\right\| \cdot 10^{3}=3.92 \pm 0.09 \pm 0.45$
$V_{c b} \mid$	inclusive and exclusive	$\left\|V_{c b}\right\| \cdot 10^{3}=40.89 \pm 0.38 \pm 0.59$
Δm_{d}	last WA $B_{d}-\bar{B}_{d}$ mixing	$B_{B_{s}} / B_{B_{d}}=1.05 \pm 0.01 \pm 0.03$
$\underset{\beta}{\Delta m_{s}}$	last WA $B_{s}-\bar{B}_{s}$ mixing last WA $J / \psi K^{(*)}$	$B_{B_{s}}=1.28 \pm 0.02 \pm 0.03$
α	last WA $\pi \pi, \rho \pi, \rho \rho$	isospin
	last WA $B \rightarrow D^{(*)} K^{(*)}$	GLW/ADS/GGSZ
$\stackrel{\text { 岂 }}{ } B \rightarrow \tau \nu$	$(1.68 \pm 0.31) \cdot 10^{-4}$	$f_{B_{s}} / f_{B_{d}}=1.199 \pm 0.008 \pm 0.023$

Inputs: γ

- GLW : D^{0} decays into CP eigenstate
- ADS : D^{0} decays to $K^{-} \pi^{+}$(fav.) and $K^{+} \pi^{-}$(sup.)
- GGSZ : D^{0} decays to $K_{s} \pi^{+} \pi^{-}$(interference in Dalitz plot)

All methods fit simultaneously:
γ, r_{B} and $\delta\left(\right.$ different r_{B} and $\left.\delta\right)$

Tree: dominant

Tree: color-suppressed
GLW: Gronau-London, PL B253, 483 (1991); Gronau-Wyler, PL B265, 172 (1991)
ADS: Atwood-Dunietz-Soni, PRL 78, 3257 (1997)
GGSZ: Giri et al, PRD 68, 054018 (2003)

Coverage-adjusted 1D p-value function for γ :

$$
71_{-25}^{+21} \quad(\mathrm{deg})
$$

Without coverage adjustment: 71_{-17}^{+11} (deg)

GGSZ: arXiv:1005.1096 ADS: arXiv:1006.4241 GLW: arXiv:1007.0504

GGSZ: arXiv:1003.3360

Inputs: $\mathrm{B} \rightarrow \mathrm{TV}$

- helicity-suppressed annihilation decay sensitive to $f_{B} \times\left|V_{u b}\right|$
- Sensitive to charged Higgs replacing the W propagator

	tag	$\mathrm{BF}(\rightarrow \mathrm{TV})\left[10^{-4}\right]$
	SL (459M)	1.70 ± 0.82
	Had (467M)	1.80 ± 0.61 NEW
	Average	1.76 ± 0.49
	SL (657M)	1.54 ± 0.48 NEW
	Had (449M)	1.79 ± 0.71
	Average	1.62 ± 0.40
World Average		1.68 ± 0.31

Prediction from global CKM fit:

$$
\mathrm{BF}\left(B^{+} \rightarrow \tau^{+} v_{\tau}\right)=\left(0.763_{-0.061}^{+0.114}\right) \times 10^{-4}
$$

$$
\mathrm{BR}\left(B^{+} \rightarrow \tau^{+} \nu\right)=\frac{G_{F}^{2} m_{B} \tau_{B}}{8 \pi} m_{\tau}^{2}\left(1-\frac{m_{\tau}^{2}}{m_{B}^{2}}\right)^{2} f_{B}^{2}\left|V_{u b}\right|^{2}
$$

KM ansatz: tested to be dominant source of CPV at the EW scale

Inputs (theor. uncer. under control (LQCD)):

	A, $\lambda:\left\|\mathrm{V}_{\text {ud }}\right\|,\left\|\mathrm{V}_{\text {us }}\right\|,\left\|\mathrm{V}_{\text {cb }}\right\|$
	$(\bar{\rho}, \bar{\eta})$
	$\rightarrow\left\|V_{\text {ub }}\right\|$
	$\rightarrow \mathrm{B} \rightarrow \mathrm{TV}$
	$\rightarrow \gamma$
	$\rightarrow \Delta m_{d}$
	$\rightarrow \Delta m_{d} \& \Delta m_{s}$
	$\rightarrow\left\|\varepsilon_{K}\right\|$
	$\rightarrow \sin 2 \beta$
	\rightarrow a

Overall consistency at 2σ level
(1)BABAR May '99-Apr '08

May '99-Jun '10

Kaons at the Tevatron

HFAG LQCD ...

Global Fit results

Wolfenstein parameters: (relative precision: $2.5 \%, 0.4 \%, 17 \%$ and 5%)

$$
\begin{array}{ll|l|l}
A=0.812_{-0.027}^{+0.013} & \lambda=0.22543 \\
\hline 0.00077 & \bar{\rho}=0.144 \pm 0.025 & \bar{\eta}=0.342_{-0.015}^{+0.016}
\end{array}
$$

Sides and angles:

$R_{u}=0.371_{-0.013}^{+0.015}$	$R_{t}=0.922_{-0.026}^{+0.025}$	$\alpha=(91.0 \pm 3.9)^{\circ}$	$\beta=\left(21.76_{-0.82}^{+0.92}\right)^{\circ}$	$\gamma=(67.2 \pm 3.9)^{\circ}$

$B_{\text {s }}$ system

$$
\beta_{s}=\left(1.041_{-0.048}^{+0.050}\right)^{\circ} \quad B F\left(B_{s} \rightarrow \mu \mu\right)\left[10^{-9}\right]=3.073_{-0.190}^{+0.070}
$$

All measurements consistent with their predictions within $\pm 1 \sigma$ except $\sin 2 \beta$: 2.6σ and $B \rightarrow$ Tv: 2.8σ

A closer look at the discrepancies

$\operatorname{Sin} 2 \beta$ and $B \rightarrow T v$ discrepancies

- The combination sin 2β and $B \rightarrow T V$ favors 2 solutions in contradictions with other inputs.
- One cannot accommodate both inputs simultaneously in the global fit.

Non-trivial correlation of indirect constraints on $\sin 2 \beta$ and $B \rightarrow T V$.

The low value of the prediction of $B \rightarrow T V$ is mainly driven by the measured value of $\sin 2 \beta$

Sources of discrepancies:

1) Measurements (stat. fluctuations)?
2) Lattice estimate of f_{B} ?
3) New Physics in $B \rightarrow$ Tv and/or sin 2β ?

Lattice QCD

$$
\frac{B R(B \rightarrow \tau \mathcal{V})}{\Delta m_{d}}=\frac{3 \pi}{4} \frac{m_{\tau}^{2} \tau_{B}}{m_{W}^{2} \eta_{B} S\left(x_{t}\right)\left|V_{u d}\right|^{2}}\left(1-\frac{m_{\tau}^{2}}{m_{B}^{2}}\right)^{2} \frac{\sin ^{2}(\beta)}{\sin ^{2}(\gamma)} \frac{1}{\boldsymbol{B}_{B_{d}}}
$$

The global fit is accommodated keeping $\mathrm{f}_{\mathrm{Bd}}{ }^{2} \times \mathrm{B}_{\mathrm{Bd}} \approx$ constant to fit Δm_{d} while increasing $f_{B d}$ to fit $B \rightarrow T V{ }^{10}$

2HDM

$$
\frac{\mathcal{B}[M \rightarrow I \nu]}{\mathcal{B}[M \rightarrow I \nu]_{\mathrm{SM}}}=\left(1+r_{H}\right)^{2} \quad r_{H}=\left(\frac{m_{q_{u}}-m_{q_{d}} \tan ^{2} \beta}{m_{q_{u}}+m_{q_{d}}}\right)\left(\frac{m_{M}}{m_{H^{+}}}\right)^{2} \quad B^{+}\{
$$

If perfect agreement SM-data, two distinct solutions in 2HDM(II)

- decoupling : $r_{H}=0\left(m_{H^{+}} \rightarrow \infty, \tan \beta\right.$ small $)$
- fine-tuned : $r_{H}=-2$ (linear correlation between $m_{H^{+}}$and large

Deschamps et al. ArXiv:0907.5135 [hep-ph] $\tan \beta$, depends on meson mass)

$\mathrm{BF}(\mathrm{B} \rightarrow \mathrm{Tv})$ meas. favors fine-tuned solution

Fine-tuned solution ruled out at 95% CL by other leptonic+semileptonic observables

Bounds on NP in $\triangle F=2$ FCNC

Neutral-B Mixing and New Physics

3 physical quantities in B-B mixing: $\left|M_{12}^{q}\right|,\left|\Gamma_{12}^{q}\right|, \quad \phi_{q}=\arg \left(-\frac{M_{12}^{q}}{\Gamma_{12}^{q}}\right)$
Observables to determine them:

- Mass and width difference: $\Delta m_{q}=M_{H}^{q}-M_{L}^{q} \simeq 2\left|M_{12}^{q}\right|, \Delta \Gamma_{q}=\Gamma_{L}^{q}-\Gamma_{H}^{q} \simeq 2\left|\Gamma_{12}^{q}\right| \cos \left(\phi_{q}\right)$
- CP Asymmetry in flavor-specific B decays: $A_{S L}^{q}=\left|\frac{\Gamma_{12}^{q}}{M_{12}^{q}}\right| \sin \left(\phi_{q}\right)=\frac{\Delta \Gamma_{q}}{\Delta m_{q}} \tan \left(\phi_{q}\right)$

Standard Model:

- M_{12} from dispersive part of the box, only internal t relevant
- Γ_{12} from absorptive part of the box, only c,u contribute (u's are negligible). Γ_{12} is a CKM-favored tree-level effect associated with final states containing a (c̄c) pair.

New physics:

- Γ_{12} can barely be affected, stems from tree-level decays
- M_{12} is very sensitive to virtual effects of new heavy particles

Generic New Physics in B_{q} Mixing: Assumptions

Assume that NP only affects short distance physics in $\Delta B=2: M_{12}$
Model-independent param. with a complex parameter Δ_{q} through: In the $\mathrm{SM}, \Delta_{\mathrm{q}}=1$.
\rightarrow To identify or constrain new physics: measure both the magnitude and phase of M_{12}

Bounds from the B_{d} sector

Constraining Δ_{d} :

$$
\begin{aligned}
& \operatorname{Re} \Delta_{d}=+0.732_{-0.056}^{+0.216} \\
& \operatorname{Im} \Delta_{d}=-0.156_{-0.087}^{+0.039}
\end{aligned}
$$

- Dominant constraints from $\sin 2 \beta$ and Δm_{d} (2 rings from 2 sol. for apex of Reference UT)
- $\mathrm{B} \boldsymbol{\rightarrow} \boldsymbol{\tau} \boldsymbol{\tau}$ part of Reference UT
$\rightarrow \sin 2 \beta_{\mathrm{SM}}=0.825_{-0.051}^{+0.014}$
$>\sin 2 \beta_{\text {meas }}=\sin \left(2 \beta_{\mathrm{sM}}+\Phi_{\mathrm{d}}^{\mathrm{NP}}\right)$
$\rightarrow \Phi_{d}{ }^{\mathrm{NP}}<0$ preferred

- Disagreement with SM driven in same direction by $\sin 2 \beta$ and A_{SL}
- 2D SM hypothesis $\left(\Delta_{d}=1\right): 2.5 \sigma(w / o B \rightarrow \tau v: 1.1 \sigma)$.
- Still sizable NP contribution possible: ~40\%

Bounds from the B_{s} sector

Constraining Δ_{s} :

$\begin{aligned} & \Delta m_{\mathrm{m}} \& \Delta \mathrm{~m}_{\mathrm{s}} \\ & \mathrm{a}_{\mathrm{cp}}(\psi \Phi) \end{aligned}$
$A_{S L}^{d} \& A_{s L}^{s} \& A_{s L}^{s}$ $\Delta \Gamma_{s} \& T_{s}{ }^{\text {FS }}$ + Reference U

$$
\begin{aligned}
& \operatorname{Re} \Delta_{\mathrm{s}}=+0.55_{-0.14}^{+0.21} \\
& \operatorname{Im} \Delta_{\mathrm{s}}=-0.68_{-0.14}^{+0.15}
\end{aligned}
$$

- Dominant constraints from $\Delta \mathrm{m}_{\mathrm{s}^{\prime}}$ $\Phi_{\mathrm{s}}{ }^{\psi \Phi}$ and A_{sL}
- Disagreement with SM driven in same direction by $\Phi_{\mathrm{s}}{ }^{\Psi \Phi}$ and A_{sL}
- 2D SM hypothesis ($\Delta_{\mathrm{s}}=1$): 2.7σ (w/o B \rightarrow Tv: 2.7б).

Still 1.3σ discrepancy between the NP in M_{12} fit prediction: $A_{\text {sL }}(N P)$ (meas. not in fit) $=$ -0.0041 ± 0.0019 and the measurement $A_{\text {sL }}(W A w /$ new $D \varnothing)=-0.0085 \pm 0.0028$.

Conclusion

KM mechanism at work at the EW scale.
Unitarity Triangle:

- Overall consistency at 2σ level
- Ongoing discrepancy between $\sin 2 \beta$ and $\mathrm{B} \rightarrow \mathrm{TV} \rightarrow$ Super Flavor Factory

New Physics in $\Delta \mathrm{F}=2$ mixing:

- The discrepancy $B \rightarrow$ Tv vs $\sin 2 \beta$ can be accommodated by a new CPV phase in the B_{d} mixing, in agreement with the latest $A_{s L}(D \varnothing)$ measurement.
- Still a lot of room for NP in the B_{s}, even with the latest CDF measurement of Φ_{s}

Precision flavor physics: unraveling the flavor structure of New Physics

- Will require a second"quantum jump": going from $\mathrm{O}(1)$ to $\mathrm{O}(0.1)$ precision is not the same as going from $\mathrm{O}(0.1)$ to $\mathrm{O}(0.01)$. Many assumptions will need to be revisited.
- An average representing a consensus of the lattice community will be mandatory ("HFAG lattice?").

Let's check that any (so long awaited) deviation from the SM is a true one and let's hope that the next decade will be even more successful than the B-factory decade.

BACKUP SLIDES

Digression: a bit of history

~1995
LEP, TeVatron (top),
NA48, KTeV....
S2001
BaBar (SLAC),
Belle (KEK), Belle (KEK), ...

Digression: a bit of history

2006

BaBar, Belle and CDF/DØ (TeVatron Bs), ...

BaBar, Belle and LQCD, ...

Sin2 β and $B \rightarrow T v$ discrepancies

2HDM

Prediction of Φ_{s} from the fit

Bounds from the B_{d} sector

Bounds from the B_{s} sector

[^0]: Kobayashi \& Maskawa,
 Prog.Theor.Phys. 49 (1973) 652
 Cited 6032 times (SPIRES)

