Higgs boson production at LHC to NNLO accuracy and finite top quark mass effects

Matthias Steinhauser

KIT

ICHEP 10, Paris, July 2010

(in collaboration with A. Pak and M. Rogal)

Computerional T

SFB

AC

TRG

Matthias Steinhauser - p.1

Outline

- I. Introduction
- II. $gg \rightarrow H$ in effective theory
- III. Finite M_t
- **IV.** Conclusions

Higgs production mechanisms

Gluon fusion

Iargest cross section

■ $gg \rightarrow H \rightarrow ZZ \rightarrow 4\mu$: gold plated mode for $M_H \gtrsim 135 \, {\rm GeV}$

sensitive to heavy particles, supersymmetry

top Yukawa coupling

Gluon fusion to NNLO

Gluon fusion to NNLO

70%-100% correction!

[Dawson'91] [Spira, Djouadi, Graudenz, Zerwas'91'93]

Gluon fusion to NNLO

[Dawson'91] [Spira, Djouadi, Graudenz, Zerwas'91'93]

[Harlander,Kilgore'02], [Anastasiou,Melnikov'02], [Ravindran, Smith, v. Neerven'03]

NLO: exact **NNLO:**
$$M_t \to \infty$$

Resummations

soft gluons

[Catani,de Florian,Grazzini,Nason'03]

Resummations

soft gluons to NNNLL

[Moch,Vogt'05,Ravindran'05'06]

Resummations

" π^2 -Resummation"

[Ahrens,Becher,Neubert,Yang'08]

all based on "heavy-top approximation"

$gg \rightarrow H$: LO, NLO

Higgs production in gluon fusion at LHC

complete dependence on \hat{s}, M_t, M_H

[Dawson'91; Spira,Djouadi,Graudenz,Zerwas'91'95]

Effective theory

Effective theory

Virtual corrections

- $\ \, \hat{s}=M_{H}^{2}$
- promising: expansion
 for $M_t^2 \gg M_H^2$ (asymptotic expansion)

[Pak,Rogal,Steinhauser'09]

[Ozeren,Harlander'09]

Real corrections

- optical theorem
- asymptotic expansion: $M_t^2 \gg M_H^2, \hat{s}$
- $ightarrow 20\,000$ Feynman diagrams
- several weeks of CPU time
- initial states: gg, qg, $q\bar{q}$, qq, qq'
- $gg \approx 95\%$ of total cross section @ LHC

Luminosity function

Hadronic results

Hadronic results (2)

$$\sigma_{gg\infty}, \delta\sigma_{gg\infty}$$
: $\sigma_{\infty}^{\text{HO}} = \sigma^{\text{LO}}(M_t) \left(\frac{\sigma^{\text{HO}}}{\sigma^{\text{LO}}}\right)_{M_t \to \infty}$
 $\sigma_{gg}, \delta\sigma_{gg}$: expand in $1/M_t$

[Pak,Rogal,Steinhauser'09]

Independent calculation: [Ozeren, Harlander'09; Robert V. Harlander, Mantler, Marzani, Kemal, Ozeren'10]

Matthias Steinhauser - p.15

Conclusions

- $pp \rightarrow H + X$ @ NNLO, finite top quark mass
- "matched results" for all initial states gg, qg, $q\bar{q}$, qq, qq'
- I/ M_t corrections small if complete LO M_t -dependence is factored out
- Our calculation: justification of "heavy-M_t" approximation!

