Exclusive Higgs and jet production at the LHC

Christophe Royon IRFU-SPP, CEA Saclay, France

ICHEP 2010, 22-28 July 2010, Paris

Work done in collaboration with Rafal Staszewski, Alice Dechambre, Oldřich Kepka, Jean-René Cudell

Contents:

- Exclusive models in diffraction
- The Forward Physics Monte Carlo (FPMC)
- Exclusive jet production at the Tevatron and comparison with CDF data
- Exclusive jet and Higgs production at the LHC
- Uncertainties on Higgs production cross section

Exclusive models in diffraction and implementation in FPMC

- Two models considered: Khoze Martin Ryskin (KMR), Cudell Dechambre Hernández Ivanov (CHIDe) (NB: Szczurek et al. model being implemented)
- KMR and CHIDe models are similar, and there are only differences in detailed implementation:
 - Different upper limit in Sudakov factor for jets: gluon-gluon invariant mass s_{gg} for KMR, gluon k_{T_2} for CHIDe
 - Exact kinematics in CHIDe, collinear for KMR
 - Proton wavefunction included in CHIDe: In addition to Sudakov factor, presence of an additional impact factor regulating divergences by suppressing very soft gluon emissions from proton

Exclusive models in diffraction and implementation in FPMC

- FPMC (Forward Physics Monte Carlo):
 - Implement all diffractive processes in one single Monte Carlo: inclusive diffraction, exclusive production (Higgs, jets, photons, χ_C ...), photon induced processes (anomalous coupling studies)
 - Hadronisation and hard matrix elements: HERWIG
 - Interface to fast ATLAS simulation: AtlFast++
 - Experimental cuts: CDF cuts and jet algorithm, ATLAS Forward Physics acceptance
 - Manual in preparation: M. Boonekamp, O. Kepka, V. Juranek, C. Royon, R. Staszewski...

Comparison with implementation in ExHume

- Another implementation of KMR was performed using Pythia: ExHume (Andy Pilkington et al.)
- Differences of about 30-40% on Higgs cross section at LHC: due to different implementation of $gg \to H$ coupling in HERWIG
- CHIDe leads to lower cross sections and stronger mass dependence, well within model uncertainties (see following discussion)

KMR (2002) ExHuME KMF 10¹ FPMC KMF Crossection σ_H [fb] FPMC KMR corrected FPMC CHIDe 10⁰ 10⁻¹ 100 110 120 130 140 150 160 Higgs mass [GeV]

pp -> pHp, √s = 14 TeV

Comparison with CDF measurements

- CDF measured the dijet mass fraction for Double Pomeron Exchange events (\bar{p} tagged, rapidity gap on p side)
- Good agreement between CDF measurement and KMR and CHIDe model

Comparison with CDF measurements

- CDF extracted the exclusive dijet mass cross section from the jet p_T dependence
- This extraction is model dependent: scale factor applied in each p_T^{min} bin on exclusive jet p_T cross section to extract dijet mass cross section
- Good agreement between KMR and CHIDe models and "measurement"

Model uncertainties - Survival probability and unintegrated gluon

- Study model uncertainties by varying the parameters in CHIDe model
- Survival probability: 0.1 at Tevatron, 0.03 assumed at LHC (multiplication factor to exclusive cross sections, to be measured using first diffractive LHC data)
- Uncertainty on unintegrated gluon densities: 4 different gluon densities with same known hard contribution (GRV98) and different assumptions on soft contribution (represent the present uncertainty on soft part)

pp -> pjjp,
$$\sqrt{s} = 2 \text{ TeV}$$

Effect of gluon uncertainties at LHC

Leads to about a factor 4 uncertainty on exclusive Higgs cross section at LHC

Modifying the Sudakov upper limit

• Variation of a factor 2 (0.25-1) of the upper limit x on the Sudakov factor

$$T(Q_T, \mu) = \exp\left[-\int_{Q_T^2/x'}^{\mu^2/x} \frac{\alpha_S(k_T^2)}{2\pi} \frac{dk_T^2}{k_T^2} \int_0^{1-\Delta} dz \left(zP_{gg}(z) + \Sigma_q P_{qg}(z)\right)\right]$$

- Negligible effect for high p_T jets at LHC
- No upper limit ambiguity for Higgs production: $\mu = M_H$

Modifying the Sudakov lower limit

• Variation of a factor 2 (0.25-1) of the lower limit x' on the Sudakov factor

$$T(Q_T, \mu) = \exp\left[-\int_{Q_T^2/x'}^{\mu^2/x} \frac{\alpha_S(k_T^2)}{2\pi} \frac{dk_T^2}{k_T^2} \int_0^{1-\Delta} dz \left(zP_{gg}(z) + \Sigma_q P_{qg}(z)\right)\right]$$

• Factor 10-20 difference for high p_T jet cross section at LHC, increases with jet p_T

Modifying Sudakov lower limit

About a factor 20 difference on exclusive Higgs cross section

Impact of CDF data on model uncertainty

- Not all variation of paramters allowed by CDF measurement
- Method to obtain the model uncertainties:
- For each gluon distribution, obtain a range of lower Sudakov limits $(x'_{min} \text{ and } x'_{max})$ which agree within 1 σ with the CDF measurement
- Use the same $(x'_{min}$ and $x'_{max})$ values to obtain the uncertainties on LHC dijets and Higgs production
- The final error band is defined by the largest differences using the 4 gluon densities
- About a factor 10 uncertainty on Higgs production at the :LHC

Impact of future LHC measurements on model uncertainty

- Assume new measurement of exclusive jet production at the LHC: 100 pb⁻¹, precision on jet energy scale assumed to be ~3% (conservative for JES, but takes into account other possible systematics)
- Use the same method as before to see the possible constraints on Higgs production: about a factor 2 uncertainty

Contributions to final Higgs uncertainty

Contribution of gluon and scale uncertainties to final Higgs cross section prediction at the LHC

Tests of Higgsless models in FPMC

- Study of QED $pp \rightarrow pWWp$ and $pp \rightarrow pZZp$ processes at the LHC: allows to study quartic anomalous couplings $\gamma\gamma WW$ and $\gamma\gamma ZZ$
- Higgsless models predict anomalous coulings $\sim 5 \ 10^{-6}$
- Improvement of LEP sensitivity by more than 4 orders of magnitude with $30/200 \text{ fb}^{-1}$ at LHC by tagging forward protons (impossible to reach these sensitivities by other methods)!!!

Couplings	OPAL limits	Sensitivity @ $\mathcal{L} = 30$ (200) fb ⁻¹	
	$[GeV^{-2}]$	5σ	95% CL
a_0^W/Λ^2	[-0.020, 0.020]	5.4 10^{-6}	$2.6 10^{-6}$
		$(2.7 \ 10^{-6})$	$(1.4 10^{-6})$
a_C^W/Λ^2	[-0.052, 0.037]	$2.0 10^{-5}$	9.4 10^{-6}
		$(9.6 \ 10^{-6})$	$(5.2 10^{-6})$
a_0^Z/Λ^2	[-0.007, 0.023]	$1.4 10^{-5}$	$6.4 10^{-6}$
		$(5.5 \ 10^{-6})$	$(2.5 10^{-6})$
a_C^Z/Λ^2	[-0.029, 0.029]	$5.2 10^{-5}$	$2.4 10^{-5}$
		$(2.0 \ 10^{-5})$	$(9.2 10^{-6})$

Conclusion

- Forward Physics Monte Carlo program: Rapid development, contains now models for inclusive/exclusive diffraction with the possibility to study the impact of uncertainties on parameters, also contains photon induced processes
- CHIDe and KMR models lead to a good description of CDF measurements
- Present uncertainties on exclusive Higgs production at LHC: about a factor 10
- Possibility to reduce the uncertainties down to factor of 2 by measuring the exclusive jet cross section at LHC (additional uncertainty coming from survival probability)
- Possibility to reduce further the uncertainties using exclusive diphoton or b-jets productions
- Test of Higgless models using quartic anomalous couplings at the LHC (see E. Chapon, O. Kepka, C. Royon, arXiv:0808.0322, Phys. Rev. D78 (2008) 073005; arXiv:0908.1061; arXiv:0912.5161 Phys. Rev. D81 (2010) 074003)