The present status of the EPS nuclear PDFs

Hannu Paukkunen

University of Santiago de Compostela, Spain

In collaboration with Carlos A. Salgado and Kari J. Eskola

Global nPDF analysis - a test of factorization

Search for process independent nPDFs to realize the differences

$$\sigma_{\text{DIS}}^{\ell+A\to\ell+X} = \sum_{i=q,\overline{q},g} f_i^A(\mu^2) \otimes \hat{\sigma}_{\text{DIS}}^{\ell+i\to\ell+X}(\mu^2)$$

Nuclear PDFs, obeying the standard DGLAP

Usual pQCD partonic cross-sections

12 years of EPS-studies

\bigcirc	1998: EKS98 (Eskola, Kolhinen, Ruuskanen, Salgado) The pioneering work – demonstrated that the	LO
	factorization works for	
	$e + A \rightarrow e + X$ (DIS)	
	$p+A \rightarrow \mu^+ + \mu^- + X \ (Drell-Yan)$	
	The "fit" was done by hand.	
	2007 : EKPS (Eskola, Kolhinen, Paukkunen, Salgado)	LO
	Reanalysis of EKS98 – automated minimization (MINUIT)	
	and a first try to estimate the uncertainties.	
•	2008 : EPS08 (Eskola, Paukkunen, Salgado)	LO
	Motivated by small-pT suppression of BRAHMS	
	pion data, the purpose was to study how strong	
	gluon suppression at small-x would be possible.	
0	2009 : EPS09 (Eskola, Paukkunen, Salgado)	LO & NLO
	The analysis extended to NLO and an error	
	analysis "a la CTEQ" was carried out.	

Experimental constraints in EPS09

• Three types of data:

Deeply inelastic scattering: Drell-Yan dilepton production: Inclusive pion production:

- The mutual consistency between the data sets is necessary. For example:
 - HERMES DIS data display a Q²-dependence not in agreement with other data. Not used.
 - The forward rapidity pions from BRAHMS display tension with other data. Not used.

The use of pion data depends of the fragmentation functions which might be different in d+Au than they are in p+p. (Sassot et. al, Phys.Rev.D81:054001, 2010)

e + A → e + X p + A → μ^+ + μ^- + X d + Au → π + X

The Framework of EPS09

The bound proton PDFs f_i(x,Q) in a nucleus A are defined as

 $f_i^A(x,Q^2) \equiv R_i^A(x,Q^2) f_i^{\text{CTEQ6.1M}}(x,Q^2)$

• MS, Zero-mass variable flavour number scheme

Our studies utilizing the SACOT-prescription (with e.g. CTEQ6.6) for the heavy quarks do <u>not</u> display large deviations from the zero-mass results in the regions constrained by the data.

The flavor-separation not well constrained by the utilized data!

Best-fit definition: Generalized χ²

• The best parameters are found by minimizing the generalized χ^2 -function:

$$\chi^{2}(\{a\}) \equiv \sum_{N} w_{N} \chi^{2}_{N}(\{a\})$$
$$\chi^{2}_{N}(\{a\}) \equiv \left(\frac{1-f_{N}}{\sigma^{\text{norm}}_{N}}\right)^{2} + \sum_{i \in N} \left[\frac{f_{N}D_{i} - T_{i}(\{a\})}{\sigma_{i}}\right]^{2}$$

D_i = Experimental values

With weight factors w_N have emphasized
certain data sets with "important physics content" but small amount of data points.

- $T_i = Theory values$
- σ_i = Uncertainty
- Relative normalization uncertainties σ^{norm} are accounted for by normalization factors $f_N \in [1-\sigma^{\text{norm}}, 1+\sigma^{\text{norm}}]$. Needed for π -data.
- The re-weighting induces some subjectivity to the central fit as well as to the error analysis... \rightarrow too optimistic errorbands?

Uncertainty analysis: Hessian method

We use the Hessian method for quantifying the nPDF errors with 15 fit parameters

$$\chi^2 \approx \chi_0^2 + \sum_{ij} \delta a_i H_{ij} \delta a_j$$

We compute the Hessian matrix H by a fit a qudratic function to actual χ^2 -values

$$f(a_i, a_j) = \chi_0^2 + c_i(a_i - a_i^0)^2 + c_j(a_j - a_j^0)^2 + c_{ij}(a_i - a_i^0)(a_j - a_j^0)$$

The 15 eigendirections of the Hessian serve as an uncorrelated basis

$$\chi^2 \approx \chi_0^2 + \sum_i z_i^2$$

Hessian method: Choice of Δχ²

 \bigcirc

 \bigcirc

Requiring the χ^2 -contribution of each data set to stay roughly within its 90% confidence range, we end up with $\Delta \chi^2 = 50$ as a reasonable estimation for permitted variation around the central fit.

Each uncertainty set $\{S\}_i$ set increases χ^2 by 50. The error to quantity X should be computed by

$$(\Delta X^{+})^{2} \approx \sum_{k} \left[\max \left\{ X(S_{k}^{+}) - X(S^{0}), X(S_{k}^{-}) - X(S^{0}), 0 \right\} \right]^{2}$$
$$(\Delta X^{-})^{2} \approx \sum_{k} \left[\max \left\{ X(S^{0}) - X(S_{k}^{+}), X(S^{0}) - X(S_{k}^{-}), 0 \right\} \right]^{2}$$

How the EPS09 look like...

NLO nuclear modifications

Comparison with data: NLO DIS F₂

Comparison with data: NLO Drell-Yan

Q²-slopes in F₂: NLO DGLAP evolution

The Q²-slopes from the DGLAP correctly reproduce the data \rightarrow evidence for the factorization

Gluon constraints from π⁰-data

 Note: This data set was heavily weighted in the fit. In the present way of quantifying the errors this additional weight artificially reduces the error bands! Including the new STAR-data (*arXiv:0912.3838*) could reduce the need for such extra weight.

Comparison other works: nDS & HKN07

About the recent EPS-activities

Analysis of Neutrino DIS Data

JHEP 1007:032,2010

Consistency check: Can we reproduce the nuclear effects in See also my talk 183, neutrino DIS by the nPDFs extracted from At 15:20, Track 4! other data?

Three ν-A DIS data sets: NuTeV (Fe), CDHSW (Fe), CHORUS (Pb)

Analysis of Neutrino DIS Data

• Generally, we obtain excellent values of χ^2 :

RAD + TM	CTEQ6.6	CTEQ6.6 + EPS09
NuTeV	1.51	1.05
CHORUS	1.15	0.78
CDHSW	1.10	0.69

The x-shape of the nuclear modification becomes well-revealed by Q²-averaged ratios:

$$R^{\text{CTEQ6.6}} \equiv \frac{\sigma^{\nu,\overline{\nu}} \text{ (Experimental)}}{\sigma^{\nu,\overline{\nu}} \text{ (CTEQ6.6)}}$$
$$R^{\text{CTEQ6.6} \times \text{EPS09}} \equiv \frac{\sigma^{\nu,\overline{\nu}} \text{ (CTEQ6.6} \times \text{EPS09)}}{\sigma^{\nu,\overline{\nu}} \text{ (CTEQ6.6)}}$$

Analysis of Neutrino DIS Data

JHEP 1007:032,2010

JHEP 1007:032,2010

NuTeV (Fe)

JHEP 1007:032,2010

NuTeV (Fe)

The NuTeV neutrino data in different E_ν bins display mutual tension!!

Expectations: Electron-Ion Collider LHeC

EPS09-predictions for structure function ratio:

$$R_{F_2}^{\rm Pb}(x,Q^2) \equiv F_2^{\rm Pb}/F_2^{\rm P}$$

Expectations: Electron-Ion Collider LHeC

• After a fit to simulated pseudo data for:

$$R_{F_2}^{Ca}(x,Q^2) \equiv F_2^{Ca}/F_2^p$$
 and $R_{F_2}^{Pb}(x,Q^2) \equiv F_2^{Pb}/F_2^p$

Expectations: Electron-Ion Collider LHeC

• This would greatly decrease the uncertainties for nuclear effects at small x:

More sophisticated study is under way...

Heavy Boson Production at LHC

Significant nuclear effects are predicted for p+Pb runs at LHC for heavy boson production.

 \bigcirc

Combining the data in a suitable way, the uncertainties originating from the free proton PDFs can be suppressed... Promising probe for nPDFs.

Summary & Outlook

NLO pQCD and the hard-process nuclear data for DIS, DY, and π^{o} production agree well in the explored kinematical range

0.005 < x < 1, $1.69 \text{ GeV}^2 < Q^2 < 150 \text{ Gev}^2$.

- Further experiments (hopefully) will open the door to small-x
 - 1. p+Pb runs at LHC looks very promising...
 - 2. Electron-Ion collider: eRHIC or LheC would provide a very clean probe.
- What to do while waiting?
 - Some new data coming from RHIC, most importantly direct photons.
 - Make use of the neutrino data.
 - Explore the flavor decomposition of valence and sea quarks.
 - Combined "master" analysis of free & bound nucleon data
 - etc...