Precision measurements of CP violation and D⁰-D⁰bar mixing at CDF

Mark Mattson Wayne State University

ICHEP 23 Jul 2010

Overview

- Why is charm mixing and CPV interesting?
- Quick overview of the CDF II detector
- Charm mixing with $D^0 \rightarrow K^+\pi^-$ or π^+K^-
 - Previous result, and prospects with current data
- CP violation measurements with $D^0 \rightarrow h^+h^-$
 - Previous result, and prospects with current data

Charm Mixing

- $\left|D_{1,2}\right\rangle = p\left|D^{0}\right\rangle \pm q\left|\bar{D^{0}}\right\rangle$
- $|D_{1,2}(t)\rangle = |D_{1,2}\rangle e^{-\left(\frac{\Gamma_{1,2}}{2} + iM_{1,2}\right)t}$

Bso

Bdo

KO

DO

- Neutral *K/D/B* mesons can oscillate between matter to anti-matter
 - For no CPV, |q/p| = 1
- Charm mixing is small
 - $x, y \sim O(1 \%)$
 - kaon mixing seen 1962
 - beauty mixing seen 1987
 - first evidence of charm mixing was in 2007

World Average

- No mixing point (0,0)
 - excluded at 10.2σ
 - Many results combined; no single measurement has reached
 5σ significance
- No CPV $(|q/p|, \phi) = (1,0)$
 - Experiments are currently consistent with CP conservation
- Experiment and theory need more precision to test for new physics

CDF II Detector

• Located at point B0 on the Fermilab Tevatron

• Looking at fully reconstructed D0 decaying to charged K and π

- silicon vertex detector surrounded by wire drift chamber (COT) in 1.4T solenoid (central tracking)
- These analyses do not use the (EM, hadronic, muon) calorimeters
- Particle identification using energy loss (dE/dX) in the COT

Displaced Track Trigger

- Using events from trigger that selects two oppositely charged tracks that are consistent with a detached vertex
 - Track momentum transverse to the beam $p_T > 2.0 \text{ GeV}$
 - Track impact parameter > 100 μ m
- Initially optimized for B decays, but also good acceptance for charm

```
\begin{array}{l} \underline{\text{Untagged D0}}\\ N(D^0 \rightarrow \pi^+ \pi^-) \ \approx \ 1.7 \times 10^6\\ N(D^0 \rightarrow K^+ K^-) \ \approx \ 4.7 \times 10^6\\ N(D^0 \rightarrow K^- \pi^+) \ \approx \ 47 \times 10^6 \end{array}
```

Note on Charm Yield & Luminosity

- Number of D* does not scale linearly with integrated luminosity
 - Charm trigger is prescaled at higher beam luminosites
 - Earlier data had higher yield of charm per 1/fb

Jan 2007 1.5/fb good for hadronic charm analysis Jun 2009 5 / fb good for hadronic charm analysis

Charm Mixing with KTT

- Use D* to tag initial production of meson
- "right-sign" (RS) Cabibbo favored decay

 $D^{*+} \rightarrow D^0 \pi^+, \ D^0 \rightarrow K^- \pi^+$

• "wrong-sign" (WS) - doubly Cabibbo suppressed decay, or mixing followed by a CF decay

 $D^{*+} \to D^0 \pi^+, \ D^0 \to K^+ \pi^- \qquad D^{*+} \to D^0 \pi^+, \ D^0 \leftrightarrow \overline{D^0} \to K^+ \pi^-$

- In the limit of lxl, lyl << 1 and no CPV, ratio of WS to RS versus decay time is $r(t) \propto e^{-\Gamma t} \left[R_D + \sqrt{R_D} y'(\Gamma t) + \frac{x'^2 + y'^2}{4} (\Gamma t)^2 \right]$
- Cannot measure mixing parameters directly, but still put limits on amplitude $y' = y \cos \delta_{K\pi} - x \sin \delta_{K\pi}$ $\delta_{K\pi}$ is the strong phase difference $x' = x \cos \delta_{K\pi} + y \sin \delta_{K\pi}$ between the DCS and CF amplitudes

Previous CDF Result

- PRL 100, 121802 (2008)
- "Evidence for D0-D0bar mixing using the CDF II Detector"
- Difference in chi2 between mixing fit (red dashed) and the no-mixing fit (blue bots) is 17.6
 - Equivalent to 3.8σ significance
- Results were competitive with the best experimental results at the time

Work in Progress

1.5/fb: 3.03 million RS D* 5.2/fb: ~6.3 million RS D*

- Time-integrated D*
 - Light green is the published result with 1.5/fb
 - Blue is current, with 5.2/fb
 - Peak at 5.9 MeV/c2 is D*
 - Rest of the distribution is D0 + random track from the primary vertex
- Working to improve systematic uncertainties on the analysis (ex. removing D* from B decays, dE/dX variation over time, etc.)

```
1.5/fb: 12.8 thousand WS D*
5.2/fb: ~26 thousand WS D*
```

10

CPViolation with $D^0 \rightarrow h^+ h^-$

$$A_{CP}^{\pi\pi} = \frac{\Gamma(D^0 \to \pi^- \pi^+) - \Gamma(\overline{D}^0 \to \pi^+ \pi^-)}{\Gamma(D^0 \to \pi^- \pi^+) + \Gamma(\overline{D}^0 \to \pi^+ \pi^-)}$$

$$\frac{\Gamma(D^{*-} \to \overline{D}^0 \pi_s^- \to [h^+ h^-] \pi_s^-)}{\Gamma(D^{*+} \to D^0 \pi_s^+ \to [h^+ h^-] \pi_s^+)} = \frac{N_{h^+ h^- \pi_s^-}}{N_{h^+ h^- \pi_s^+}} \cdot \frac{\varepsilon_{h^+ h^-}}{\varepsilon_{h^+ h^-}} \cdot \frac{\varepsilon_{\pi_s^+}}{\varepsilon_{\pi_s^-}}$$

$$\frac{\Gamma(\overline{D}^0 \to K^+ \pi^-)}{\Gamma(D^0 \to K^- \pi^+)} = \frac{N_{K^+ \pi^-}}{N_{K^- \pi^+}} \cdot \frac{\varepsilon_{K^- \pi^+}}{\varepsilon_{K^+ \pi^-}}$$

In addition to direct CP violation, D⁰ oscillations
can generate time
dependent CP
asymmetries that survive
integrating over time

 To make precision measurement, need to correct for detector systematics that can bias the asymmetry

Previous CDF Result

• PRL 94, 122001 (2005)

"Relative Branching
 Fractions and Search for
 CP Asymmetry for D0 ->
 Kπ/KK/ππ

• L = 0.123 / fb

- (first 15 months of data taking)
- $D0 \rightarrow KK 8.2$ thousand
- **D** $\rightarrow \pi\pi$ 3.7 thousand
- D0 -> $K\pi$ 88.3 thousand

 $\begin{array}{rcl} A(D^{\circ} \to K^{+}K^{-}) &=& 2.0 \pm 1.2(stat) \pm 0.6(syst) \ \% \\ A(D^{\circ} \to \pi^{+}\pi^{-}) &=& 1.0 \pm 1.3(stat) \pm 0.6(syst) \ \% \end{array}$

Work in Progress

Assuming:
$$\sigma_N \cong \sigma_{\overline{N}} \cong 1/\sqrt{N} \Longrightarrow \sigma_{A_{CP}} = 1/\sqrt{N + \overline{N}}$$

Experiment	N (D ⁰ →π ⁺ π ⁻)	$A_{CP}(D^0 \rightarrow \pi^+\pi^-) (\%)$
CDF(0.123/fb)	7.3K	$1.0 \pm 1.3(\text{stat}) \pm 0.6(\text{syst})$
CDF(4.8/fb)	273K	$xxx \pm 0.19(stat) \pm xxx (syst)$
Babar (386/fb)	64K	$-0.24 \pm 0.52(\text{stat}) \pm 0.22(\text{syst})$
Belle(540/fb)	51K	$+0.43 \pm 0.52$ (stat) ± 0.12 (syst)

Experiment	N (D ⁰ →K+K ⁻)	A _{CP} (D ⁰ →K+K ⁻) (%)
CDF(0.123/fb)	7.3K	$1.0 \pm 1.3(\text{stat}) \pm 0.6$ (syst)
CDF(4.8/fb)	781K	$xxx \pm 0.11(stat) \pm xxx (syst)$
Babar (386/fb)	129K	$0. \pm 0.34(\text{stat}) \pm 0.13(\text{syst})$
Belle(540/fb)	120K	$-0.43 \pm 0.30(\text{stat}) \pm 0.11$ (syst)

Systematic uncertainty is expected to be O(0.1%), comparable to statistical uncertainty.

Conclusion

- Working to update two previous results (charm mixing, charm direct CPV) with more data
 - Substantial charm samples
- Mature detector, understood systematic effects
 - Working to improve precision of the syst. errors
- Stay tuned!

Backup Slides

Displaced Track Trigger

- Run I collected O(1) B_s--> D_s π (all D_s modes)
- Run II collected ~2000 $B_s \rightarrow D_s \pi$ ($D_s \rightarrow \phi[- K^+K^-] \pi$)
- Compare with only 10x integrated luminosity!
- The trigger had a much bigger impact than Tevatron upgrade!!!

Without SVT

With SVT

M.J. Morello

Charm Mix plots

				Mixing
Experiment	$R_D(10^{-3})$	$y'\left(10^{-3}\right)$	$x^{\prime 2} (10^{-3})$	Signif.
CDF	3.04 ± 0.55	8.5 ± 7.6	-0.12 ± 0.35	3.8
BABAR [8]	3.03 ± 0.19	9.7 ± 5.4	-0.22 ± 0.37	3.9
Belle [9]	3.64 ± 0.17	$0.6 \ ^{+4.0}_{-3.9}$	$0.18 \ ^{+0.21}_{-0.23}$	2.0

+	= No mixing point $(x'^2,y'=0)$
•	= Best fit point

 $\diamond =$ Best fit point with x'²=0