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Introduction
• Little Higgs models: solve Little Hierarchy (Little Fine Tuning) Problem
• Higgs as PGB with decay constant f
• If 1-loop divergent mass then  f = v (= EW vev)

• Collective Symmetry Mechanism forbids 1-loop divergent mass, hence f = 4πv

• Collective Symmetry Mechanism:

L G→ H Π : coordinates on G/Hwith symmetry

δΠ ∼ ε + εΠ + · · · ⇒ no potential for Π

Break G explicitly: L→ L+ g1δL1 ⇒ generate V1 but if G1 ⊂ G, H1 ⊂ H, G1 → H1

is still an exactly symmetry, spontaneously broken ⇒ some GBs, including h, are still exact, no potential for them

L→ L+ g2δL2Repeat with and G2 ⊂ G, H2 ⊂ H, G2 → H2 still exact AND with h among its exact GBs

L→ L+ g1δL1 + g2δL2 No exact GBs. BUT any term in V(h) must vanish as either            → 0         g1, g2

At 1-loop, (divergent) mass term is from single particle exchange, m2
h ∼ g2

1 or g2
2 ⇒ m2

h = 0 (up to finite terms)
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Littlest Higgs (only to establish notation):

• SU(5)  →   SO(5)

• Order parameter: 2-index symmetric tensor:
• 14 Goldstone Bosons, 10 unbroken generators

• Break symmetry explicitly: Gauge [SU(2) x U(1)]1  x  [SU(2) x U(1)]2 

• As SU(5)  →   SO(5),   gauge group breaks to diagonal SU(2) x U(1) = electroweak

• 4 Goldstone bosons are eaten (higgs mechanism)
• Remaining 10 are pseudo-GBs, acquire potential
• Anatomy of collective symmetry:

L2H model that are more phenomenologically viable. We derive another bound for the
SU(2) × SU(2) × U(1) LH model [?] and note that the bound supplies a reason for the
gauge coupling hierarchy g1 " g2 that is desirable as it minimizes the fine tuning of the
Higgs mass. We also argue that for LH models with T -parity, the Σew vacuum is the
absolute minimum at lowest order in the top-Yukawa, demonstrating that for some LH
model variants, the vacuum selected by the gauge sector can be valid for small gauge
couplings.

2 Top vacuum misalignment for L2H

To establish notation we briefly review elements of the L2H [?]. It has Gf = SU(5),
H = SO(5) and Gw =

∏

i=1,2 SU(2)i × U(1)i. Symmetry breaking SU(5) → SO(5) is
characterized by the Goldstone boson decay constant F . The embedding of Gw in Gf is
fixed by taking the generators of SU(2)1 and SU(2)2 to be

Qa
1 =

( 1
2τa 02×3

03×2 03×3

)

and Qa
2 =

(

03×3 03×2

02×3 −1
2τa∗

)

(1)

and the generators of the U(1)1 and U(1)2

Y1 =
1

10
diag(−3,−3, 2, 2, 2) and Y2 =

1

10
diag(−2,−2,−2, 3, 3). (2)

The vacuum manifold is characterized by a unitary, symmetric 5 × 5 matrix Σ. We
denote by gi (g′i) the gauge couplings associated with SU(2)i (U(1)i). If one sets g1 = g′1 = 0
the model has an exact global SU(3) symmetry (acting on upper 3× 3 block of Σ), while
for g2 = g′2 = 0 it has a different exact global SU(3) symmetry (acting on the lower
3 × 3 block). This gives rise to the collective symmetry that ensures the absence of 1-
loop quadratic divergences in the higgs mass. To lowest order in the Gw couplings, the
quadratically divergent contribution to the vacuum energy is

Vw(Σ) =
3

4
cF 4

∑

α

g2
αTr

(

TαΣ(Tα)T Σ†
)

, (3)

where the sum on α runs over all generators of Gw. We have normalized so that c = 1 cor-
responds to the quadratic divergence in the Coleman-Weinberg potential with a Euclidean
momentum cut-off Λ = 4πF .

It is standard to introduce the top quark so that the collective symmetry argument
still applies. Additional spinor fields are introduced: qR, uL and uR that transform as 12/3

under SU(2)1 × U(1)1, and qL transforming as 21/6. These couple via

Ltop = −
1

2
λ1 F χ̄Li εijk εmn Σjm Σkn qR − λ2 F ūL uR + h.c. (4)

3
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Σ = ΣT , Σ†Σ = 1

Π =




h φ

h† hT

φ∗ h∗





J
H
E
P
0
7
(
2
0
0
2
)
0
3
4

model contains a single Higgs doublet and nothing else. At the TeV scale there is an ad-
ditional triplet scalar, and four gauge bosons: an electroweak triplet W ′±0, and a neutral
electroweak singlet B ′0.

3. The model

Our minimal theory is based on an SU(5)/SO(5) non-linear sigma model, the same struc-
ture considered in the original Composite Higgs models. Since this non-linear sigma model
may not be as familiar as the QCD chiral lagrangian for pions, we describe it in some
detail here. The breaking of SU(5) → SO(5) guarantees 14 Goldstone bosons. In order to
construct the non-linear sigma model, it is convenient to imagine for a moment that this
breaking arises from a vacuum expectation value for a 5 × 5 symmetric matrix Φ, which
transforms as Φ → V ΦV T under SU(5). A vacuum expectation value for Φ proportional
to the unit matrix then breaks SU(5) → SO(5). For later convenience, we use an equiva-
lent basis where the vacuum expectation value for the symmetric tensor points in the Σ0

direction where Σ0 is

Σ0 =



 1



 . (3.1)

The unbroken SO(5) generators satisfy

TaΣ0 + Σ0T
T
a = 0 (3.2)

while the broken generators obey

XaΣ0 − Σ0X
T
a = 0 . (3.3)

As usual, the Goldstone bosons are fluctuations about this background in the broken
directions Π ≡ πaXa, and can be parameterized by the non-linear sigma model field

Σ(x) = eiΠ/fΣ0e
iΠT /f = e2iΠ/fΣ0 , (3.4)

where the last step follows from (3.3).
We now introduce the gauge and Yukawa interactions which explicitly break the global

symmetry. As stressed in the previous section, these are chosen to ensure an enhanced
SU(3) global symmetry in the limit where any of the couplings are turned off. We begin
by gauging a G1 × G2 = [SU(2) × U(1)]2 subgroup of the SU(5) global symmetry. The
generators of the first G1 = SU(2) × U(1) are embedded into SU(5) as

Qa
1 =

(
σa/2

)
, Y1 = diag(−3,−3, 2, 2, 2)/10 (3.5)

while the generators of the second SU(2) × U(1) are given by

Qa
2 =

(

−σa∗/2

)

, Y2 = diag(−2,−2,−2, 3, 3)/10 . (3.6)

– 4 –
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unbroken:

broken:

T aΣ0 + Σ0T
aT = 0

XaΣ0 − Σ0X
aT = 0




2× 2 2× 1 2× 2
1× 2 1× 1 1× 2
2× 2 2× 1 2× 2





notation:
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where the sum on α runs over all generators of Gw. We have normalized so that c = 1 cor-
responds to the quadratic divergence in the Coleman-Weinberg potential with a Euclidean
momentum cut-off Λ = 4πF .

It is standard to introduce the top quark so that the collective symmetry argument
still applies. Additional spinor fields are introduced: qR, uL and uR that transform as 12/3

under SU(2)1 × U(1)1, and qL transforming as 21/6. These couple via

Ltop = −
1

2
λ1 F χ̄Li εijk εmn Σjm Σkn qR − λ2 F ūL uR + h.c. (4)
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model contains a single Higgs doublet and nothing else. At the TeV scale there is an ad-
ditional triplet scalar, and four gauge bosons: an electroweak triplet W ′±0, and a neutral
electroweak singlet B ′0.

3. The model

Our minimal theory is based on an SU(5)/SO(5) non-linear sigma model, the same struc-
ture considered in the original Composite Higgs models. Since this non-linear sigma model
may not be as familiar as the QCD chiral lagrangian for pions, we describe it in some
detail here. The breaking of SU(5) → SO(5) guarantees 14 Goldstone bosons. In order to
construct the non-linear sigma model, it is convenient to imagine for a moment that this
breaking arises from a vacuum expectation value for a 5 × 5 symmetric matrix Φ, which
transforms as Φ → V ΦV T under SU(5). A vacuum expectation value for Φ proportional
to the unit matrix then breaks SU(5) → SO(5). For later convenience, we use an equiva-
lent basis where the vacuum expectation value for the symmetric tensor points in the Σ0

direction where Σ0 is

Σ0 =



 1



 . (3.1)

The unbroken SO(5) generators satisfy

TaΣ0 + Σ0T
T
a = 0 (3.2)

while the broken generators obey

XaΣ0 − Σ0X
T
a = 0 . (3.3)

As usual, the Goldstone bosons are fluctuations about this background in the broken
directions Π ≡ πaXa, and can be parameterized by the non-linear sigma model field

Σ(x) = eiΠ/fΣ0e
iΠT /f = e2iΠ/fΣ0 , (3.4)

where the last step follows from (3.3).
We now introduce the gauge and Yukawa interactions which explicitly break the global

symmetry. As stressed in the previous section, these are chosen to ensure an enhanced
SU(3) global symmetry in the limit where any of the couplings are turned off. We begin
by gauging a G1 × G2 = [SU(2) × U(1)]2 subgroup of the SU(5) global symmetry. The
generators of the first G1 = SU(2) × U(1) are embedded into SU(5) as

Qa
1 =

(
σa/2

)
, Y1 = diag(−3,−3, 2, 2, 2)/10 (3.5)

while the generators of the second SU(2) × U(1) are given by

Qa
2 =

(

−σa∗/2

)

, Y2 = diag(−2,−2,−2, 3, 3)/10 . (3.6)
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T aΣ0 + Σ0T
aT = 0
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
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2× 2 2× 1 2× 2
1× 2 1× 1 1× 2
2× 2 2× 1 2× 2


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notation:
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Littlest Higgs (only to establish notation):

• SU(5)  →   SO(5)

• Order parameter: 2-index symmetric tensor:
• 14 Goldstone Bosons, 10 unbroken generators

• Break symmetry explicitly: Gauge [SU(2) x U(1)]1  x  [SU(2) x U(1)]2 

• As SU(5)  →   SO(5),   gauge group breaks to diagonal SU(2) x U(1) = electroweak

• 4 Goldstone bosons are eaten (higgs mechanism)
• Remaining 10 are pseudo-GBs, acquire potential
• Anatomy of collective symmetry:

L2H model that are more phenomenologically viable. We derive another bound for the
SU(2) × SU(2) × U(1) LH model [?] and note that the bound supplies a reason for the
gauge coupling hierarchy g1 " g2 that is desirable as it minimizes the fine tuning of the
Higgs mass. We also argue that for LH models with T -parity, the Σew vacuum is the
absolute minimum at lowest order in the top-Yukawa, demonstrating that for some LH
model variants, the vacuum selected by the gauge sector can be valid for small gauge
couplings.

2 Top vacuum misalignment for L2H
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The vacuum manifold is characterized by a unitary, symmetric 5 × 5 matrix Σ. We
denote by gi (g′i) the gauge couplings associated with SU(2)i (U(1)i). If one sets g1 = g′1 = 0
the model has an exact global SU(3) symmetry (acting on upper 3× 3 block of Σ), while
for g2 = g′2 = 0 it has a different exact global SU(3) symmetry (acting on the lower
3 × 3 block). This gives rise to the collective symmetry that ensures the absence of 1-
loop quadratic divergences in the higgs mass. To lowest order in the Gw couplings, the
quadratically divergent contribution to the vacuum energy is

Vw(Σ) =
3

4
cF 4

∑

α

g2
αTr

(

TαΣ(Tα)T Σ†
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, (3)

where the sum on α runs over all generators of Gw. We have normalized so that c = 1 cor-
responds to the quadratic divergence in the Coleman-Weinberg potential with a Euclidean
momentum cut-off Λ = 4πF .

It is standard to introduce the top quark so that the collective symmetry argument
still applies. Additional spinor fields are introduced: qR, uL and uR that transform as 12/3

under SU(2)1 × U(1)1, and qL transforming as 21/6. These couple via

Ltop = −
1

2
λ1 F χ̄Li εijk εmn Σjm Σkn qR − λ2 F ūL uR + h.c. (4)
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3

L2H model that are more phenomenologically viable. We derive another bound for the
SU(2) × SU(2) × U(1) LH model [?] and note that the bound supplies a reason for the
gauge coupling hierarchy g1 " g2 that is desirable as it minimizes the fine tuning of the
Higgs mass. We also argue that for LH models with T -parity, the Σew vacuum is the
absolute minimum at lowest order in the top-Yukawa, demonstrating that for some LH
model variants, the vacuum selected by the gauge sector can be valid for small gauge
couplings.

2 Top vacuum misalignment for L2H

To establish notation we briefly review elements of the L2H [?]. It has Gf = SU(5),
H = SO(5) and Gw =

∏

i=1,2 SU(2)i × U(1)i. Symmetry breaking SU(5) → SO(5) is
characterized by the Goldstone boson decay constant F . The embedding of Gw in Gf is
fixed by taking the generators of SU(2)1 and SU(2)2 to be

Qa
1 =

( 1
2τa 02×3

03×2 03×3

)

and Qa
2 =

(

03×3 03×2

02×3 −1
2τa∗

)

(1)

and the generators of the U(1)1 and U(1)2

Y1 =
1

10
diag(−3,−3, 2, 2, 2) and Y2 =

1

10
diag(−2,−2,−2, 3, 3). (2)

The vacuum manifold is characterized by a unitary, symmetric 5 × 5 matrix Σ. We
denote by gi (g′i) the gauge couplings associated with SU(2)i (U(1)i). If one sets g1 = g′1 = 0
the model has an exact global SU(3) symmetry (acting on upper 3× 3 block of Σ), while
for g2 = g′2 = 0 it has a different exact global SU(3) symmetry (acting on the lower
3 × 3 block). This gives rise to the collective symmetry that ensures the absence of 1-
loop quadratic divergences in the higgs mass. To lowest order in the Gw couplings, the
quadratically divergent contribution to the vacuum energy is

Vw(Σ) =
3

4
cF 4

∑

α

g2
αTr

(

TαΣ(Tα)T Σ†
)

, (3)

where the sum on α runs over all generators of Gw. We have normalized so that c = 1 cor-
responds to the quadratic divergence in the Coleman-Weinberg potential with a Euclidean
momentum cut-off Λ = 4πF .

It is standard to introduce the top quark so that the collective symmetry argument
still applies. Additional spinor fields are introduced: qR, uL and uR that transform as 12/3

under SU(2)1 × U(1)1, and qL transforming as 21/6. These couple via

Ltop = −
1

2
λ1 F χ̄Li εijk εmn Σjm Σkn qR − λ2 F ūL uR + h.c. (4)
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model contains a single Higgs doublet and nothing else. At the TeV scale there is an ad-
ditional triplet scalar, and four gauge bosons: an electroweak triplet W ′±0, and a neutral
electroweak singlet B ′0.

3. The model

Our minimal theory is based on an SU(5)/SO(5) non-linear sigma model, the same struc-
ture considered in the original Composite Higgs models. Since this non-linear sigma model
may not be as familiar as the QCD chiral lagrangian for pions, we describe it in some
detail here. The breaking of SU(5) → SO(5) guarantees 14 Goldstone bosons. In order to
construct the non-linear sigma model, it is convenient to imagine for a moment that this
breaking arises from a vacuum expectation value for a 5 × 5 symmetric matrix Φ, which
transforms as Φ → V ΦV T under SU(5). A vacuum expectation value for Φ proportional
to the unit matrix then breaks SU(5) → SO(5). For later convenience, we use an equiva-
lent basis where the vacuum expectation value for the symmetric tensor points in the Σ0

direction where Σ0 is

Σ0 =



 1



 . (3.1)

The unbroken SO(5) generators satisfy

TaΣ0 + Σ0T
T
a = 0 (3.2)

while the broken generators obey

XaΣ0 − Σ0X
T
a = 0 . (3.3)

As usual, the Goldstone bosons are fluctuations about this background in the broken
directions Π ≡ πaXa, and can be parameterized by the non-linear sigma model field

Σ(x) = eiΠ/fΣ0e
iΠT /f = e2iΠ/fΣ0 , (3.4)

where the last step follows from (3.3).
We now introduce the gauge and Yukawa interactions which explicitly break the global

symmetry. As stressed in the previous section, these are chosen to ensure an enhanced
SU(3) global symmetry in the limit where any of the couplings are turned off. We begin
by gauging a G1 × G2 = [SU(2) × U(1)]2 subgroup of the SU(5) global symmetry. The
generators of the first G1 = SU(2) × U(1) are embedded into SU(5) as

Qa
1 =

(
σa/2

)
, Y1 = diag(−3,−3, 2, 2, 2)/10 (3.5)

while the generators of the second SU(2) × U(1) are given by

Qa
2 =

(

−σa∗/2

)

, Y2 = diag(−2,−2,−2, 3, 3)/10 . (3.6)
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unbroken:

broken:

T aΣ0 + Σ0T
aT = 0

XaΣ0 − Σ0X
aT = 0
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The Hidden Fine Tuning

Ltop = −1
2

λ1 f χ̄Li εijk εxy Σjx Σky qR − λ2 f ūL uR
i, j, k = 1, 2, 3
x, y = 4, 5

χL =
(

qL

uL

)

top-quark sector of Littlest Higgs model:  
Field content (SU(2)U(1)):       qL (21/6),      qR (12/3),      uL (12/3),      uR (12/3)

“royal triplet”:
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The Hidden Fine Tuning

Trivial observations: this is a symmetry breaking term; SU(3)upper does not commute with GEW

There is no reason to preserve part of the global symmetry; only gauged subgroups survive.
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these under U(1)× U(1) are listed below, in (15). Their couplings are taken to be

Ltop = −1
2

λ1 f χ̄Li ε
ijk εxy Σjx Σky qR − λ2 f ūL uR + h.c. (3)

where the indexes i, j, k run over 1,2,3, the indexes x, y over 4, 5 and the triplet χL is

χL =

(
iτ2qL

uL

)
. (4)

The collective symmetry argument now runs as follows. If λ2 = 0 then Ltop in (3) is
constructed so that it exhibits an explicit global SU(3) symmetry, a subgroup of Gf =
SU(5). Under this, the fields χL in (4) and Σix transform as triplets (on i = 1, 2, 3). Since
this would-be exact global symmetry is spontaneously broken it guarantees that the Higgs
field remains an exactly massless Goldstone boson. Similarly, if λ1 = 0 then there is no
coupling of the quarks to the Goldstone bosons, which therefore remain massless. Hence,
the mass term must vanish as either λ1 or λ2 are set to zero, and since the quadratic
divergence is polynomial in the couplings, it can only arise at two loops.

The gauge and top-quark interactions generate an effective, Coleman-Weinberg poten-
tial which determines the vacuum orientation. If the gauge couplings are strong enough[8],

g′21 + g2
1 >

2Nc

3π2c
λ2

1 λ2
2

[
ln

(
Λ2

(λ2
1 + λ2

2)f2

)
+

ĉ′

2

]
. (5)

where c and ĉ′ are unknown dynamical constants of order unity, the vacuum alignment is

Σew =




0 0 12×2

0 1 0
12×2 0 0



 . (6)

leading to the gauge-symmetry breaking into the electroweak subgroup,
∏

i=1,2 SU(2)i ×
U(1)i → SU(2)× U(1).

2.2 The Hidden Fine Tuning

As we just saw, the top quark Lagrangian Ltop in (3) is constructed so that it exhibits an
explicit global SU(3) symmetry. However, this is a symmetry of the Lagrangian only for
λ2 = g1 = g′1 = 0.

There is in fact no symmetry reason for the fields in χL to combine into a triplet.
Given that the effective Lagrangian is restricted only by the non-linear realization of the
symmetry (by parametrizing Gf/H) and by the requirement of explicit gauge invariance
under Gw, the coupling in (3) is more generally of the form

Ltop = −λ1f q̄ i
L εxyΣixΣ3yqR −

1
2
λ′1fūLε3jkεxyΣjxΣkyqR − λ2fūLuR + h.c. (7)

4
There is an implicit (hidden) fine tuning λ1 = λ′

1

Does it make sense to impose this as a flavor symmetry? 
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Figure 1: Feynman diagram that contributes to the renormalization of the Yukawa cou-
plings λ1 and λ′

1. The wavy line represents a gauge boson of U(1)1 and the solid and doted
lines a spinor and a PGB, respectively.

The numerical value for b can be obtained from the standard QED beta function (see
[10])

b =
2
3

∑

Weyl fermion

Y 2
1i +

1
6

∑

real scalar

Y 2
1i (12)

To compute this, we need to introduce the Yukawa-type coupling for all the other standard
model quarks. We will follow Perelstein [1] by noting that there is no need for implement-
ing collective symmetry breaking for the other standard model quarks due to their small
Yukawa couplings. Thus the other “up” type quarks Yukawa interaction can be introduced
by

−λu
αf q̄ i

αLεxyΣixΣ3yqαR (13)

where α = 1, 2 is the quark family index. Similarly the other “down” type quark interac-
tions can be introduced by

−λd
αf q̄ i

αLεxy(Σ∗)ix(Σ∗)3ydαR (14)

here α = 1, 2, 3. If we take Y2(qR) = y, then the Y1 charge of all the particles involved are

qαL qαR dαR uL uR H φ
Y1

11
30 − y 2

3 − y 1
15 − y 13

15 − y 13
15 − y 1/4 1/2

Y2 y − 1
5 y y − 2

5 y − 1
5 y − 1

5 1/4 1/2
(15)

Thus we get b = 1
360

(
2737− 8832y + 10080y2

)
≥ 46/105. However, we note that the y can

be arbitrary.
We do not dwell on the numerics, since there are too many adjustable parameters (the

choice of y, the value of U(1) couplings and λ1,2(Λ) which however must satisfy (5), the
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Only when λ′
1 = λ1 (and λ2 = g1 = g′

1 = 0) do we recover the global SU(3) symmetry of
the collective symmetry mechanism. The main observation of this work is that the relation
λ′

1 = λ1, assumed throughout the little higgs literature, is unnatural. We refer to this as
the hidden fine tuning problem.

Although λ′
1 = λ1 is natural in the absence of the gauge interactions, these are already

present in the UV completion. Below we comment in slightly more detail on how radiative
effects explicitly introduce SU(3) breaking into the Yukawa couplings.

It should be evident that for λ′
1 != λ1 the collective symmetry argument is spoiled. A

straightforward computation gives a quadratically divergent correction to the higgs mass,

δm2
h =

12
16π2

(λ2
1 − λ′2

1 )Λ2 (8)

where Λ is a UV cut-off. The severity of the fine tuning can now be explored. If we insist
that the Higgs mass should be naturally of order of 100 GeV, while Λ ∼ 10 TeV, then, not
surprisingly, λ′

1 − λ1 ! (4πmh/Λ)2 ∼ 1%.
The Lagrangian in (7) is not the most general one consistent with symmetries to lowest

order in the chiral expansion. If SU(3) were a good symmetry one could add to the
Lagrangian a term of the form

χ̄Liεjklεxy(Σ∗)ij(Σ∗)kx(Σ∗)lyqR (9)

One can also freely replace qR ↔ uR in Eqs. (3) and (9), and then, of course, split each
SU(3) invariant term into a sum of SU(2) × U(1) invariant terms. There is no reason a
priori why these terms should be ignored, but they are not dangerous. In fact, they are
inevitable, as they are generated radiatively, many of them already at one loop [9].

2.3 Radiatively induced λ′
1 != λ1

Imposing λ′
1 − λ1 = 0 is not only a fine tuning, it is unnatural. Since the symmetry is

broken by marginal operators, the renormalization group evolution of the difference λ′
1−λ1

takes it away from zero, even if it is chosen to be zero at some arbitrary renormalization
point µ.

As a check we have computed explicitly the one loop renormalization group equations
for these couplings (see Fig. 1):

µ
∂

∂µ
ln

(
λ1

λ′
1

)
=

(
2
3 − y

) 3g′2
1

16π2
(10)

Here y is the charge of qR under U(1)2. Details of the calculation will be presented
elsewhere[9]. If βg′1

= (b/16π2)g′3
1 then we can write the solution in terms of the run-

ning coupling:
λ1(µ)
λ′

1(µ)
=

λ1(Λ)
λ′

1(Λ)

(
g′
1(µ)

g′
1(Λ)

) 2−3y
b

(11)
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Forced on the theory by gauge interactions:

where

Moreover, this running must occur in the UV completion as well. So there is no
natural way of justifying λ1(Λ) = λ′

1(Λ)
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1 = 0) do we recover the global SU(3) symmetry of
the collective symmetry mechanism. The main observation of this work is that the relation
λ′

1 = λ1, assumed throughout the little higgs literature, is unnatural. We refer to this as
the hidden fine tuning problem.

Although λ′
1 = λ1 is natural in the absence of the gauge interactions, these are already
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Lagrangian a term of the form
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One can also freely replace qR ↔ uR in Eqs. (3) and (9), and then, of course, split each
SU(3) invariant term into a sum of SU(2) × U(1) invariant terms. There is no reason a
priori why these terms should be ignored, but they are not dangerous. In fact, they are
inevitable, as they are generated radiatively, many of them already at one loop [9].

2.3 Radiatively induced λ′
1 != λ1

Imposing λ′
1 − λ1 = 0 is not only a fine tuning, it is unnatural. Since the symmetry is

broken by marginal operators, the renormalization group evolution of the difference λ′
1−λ1

takes it away from zero, even if it is chosen to be zero at some arbitrary renormalization
point µ.

As a check we have computed explicitly the one loop renormalization group equations
for these couplings (see Fig. 1):
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)
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1
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1 then we can write the solution in terms of the run-
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How bad is it?

δλ1 ≈
1
24

m2
h

f2
∼ 1

24

(
100 GeV
1 TeV

)2

∼ 0.04%

Note: This is Δ = 2400 in the  Ellis, Enqvist, Nanopoulos, Zwirner/Barbieri, Giudice measure of fine tuning
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Note: 

• If you  fine tune λ′ = λ at the cutoff scale: running is a 1-loop effect and contributes to mass 
through a 1-loop graph. Hence the actual correction to the higgs mass is a 2-loop effect.  If 
you don’t fine tune λ′ = λ it is really a 1-loop effect.

• Numerically,  effect is large (much larger than 2-loops):
                Needed λ′ − λ ≤ 4 ×10−4, while 1-loop is ≈ 1/16π2 ≈ 63 ×10−4

•  y = 2/3 gives no 1-loop logarithmic running, but one cannot ignore finite, non-logarithmic 
corrections (We computed the log corrections because they are universal. But there is no 
reason to expect that the running above Λ plus the matching at Λ will keep λ′ = λ even at y 
= 2/3).
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Note: 

• If you  fine tune λ′ = λ at the cutoff scale: running is a 1-loop effect and contributes to mass 
through a 1-loop graph. Hence the actual correction to the higgs mass is a 2-loop effect.  If 
you don’t fine tune λ′ = λ it is really a 1-loop effect.

• Numerically,  effect is large (much larger than 2-loops):
                Needed λ′ − λ ≤ 4 ×10−4, while 1-loop is ≈ 1/16π2 ≈ 63 ×10−4

•  y = 2/3 gives no 1-loop logarithmic running, but one cannot ignore finite, non-logarithmic 
corrections (We computed the log corrections because they are universal. But there is no 
reason to expect that the running above Λ plus the matching at Λ will keep λ′ = λ even at y 
= 2/3).

• Can one impose a symmetry in the underlying UV theory that enforces λ′ = λ to high 
accuracy in spite of the fact that the symmetry is broken by gauge interactions?

• Isn’t it just like flavor in QCD?
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In particular consider SU(3) as an approximate flavor symmetry of QCD.
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What are Flavor symmetries in QCD?

In particular consider SU(3) as an approximate flavor symmetry of QCD.

This is a natural symmetry, in the sense that it appears automatically:

i. choose randomly masses of N quarks, without insisting in any relation among them

ii. count how many, say K, are very light compared to the QCD scale

iii. an approximate SU(K) symmetry follows
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This is a natural symmetry, in the sense that it appears automatically:

i. choose randomly masses of N quarks, without insisting in any relation among them

ii. count how many, say K, are very light compared to the QCD scale

iii. an approximate SU(K) symmetry follows

The symmetry does not commute with Gem yet it remains good because it is natural (as above). 
(Even if electromagnetic corrections rendered the masses larger than the QCD scale, the resulting 
masses would be nearly degenerate and there would still be an SU(K) symmetry).

We do not and cannot insist in, say, mu = md, to have isospin symmetry, corrected by Gem.
(We could, however, insist on ms = md, because then V-spin is an exact symmetry.)
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What are Flavor symmetries in QCD?

In particular consider SU(3) as an approximate flavor symmetry of QCD.

This is a natural symmetry, in the sense that it appears automatically:

i. choose randomly masses of N quarks, without insisting in any relation among them

ii. count how many, say K, are very light compared to the QCD scale

iii. an approximate SU(K) symmetry follows

The symmetry does not commute with Gem yet it remains good because it is natural (as above). 
(Even if electromagnetic corrections rendered the masses larger than the QCD scale, the resulting 
masses would be nearly degenerate and there would still be an SU(K) symmetry).

We do not and cannot insist in, say, mu = md, to have isospin symmetry, corrected by Gem.
(We could, however, insist on ms = md, because then V-spin is an exact symmetry.)

Moral: in the absence of fine tuning, flavor-symmetry breaking interactions in a phenomenological 
lagrangian take the most general form consistent with gauge invariance (and exact unbroken 
symmetries). 
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Can we get around it by clever model building? 
No. Generalize to any Little Higgs model: 
Assumptions:

1. G → H
2. Weakly gauged Gw ⊂ G, contains Gew,  Gew ⊆ H
3. There is a higgs, h, in G/H
4. Collective symmetry group Gc ⊂ G, with h transforming nonlinearly
5. There is a term in the lagrangian that is symmetric under both Gew and Gc
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4. Collective symmetry group Gc ⊂ G, with h transforming nonlinearly
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subgroup. It follows that a gauge invariant term in the Lagrangian that is also invariant
under Gc is a sum of terms that are individually gauge invariant. The only exception is
when the term is constructed of fields that are separately SU(2) invariant, as is the case of
the λ2 mass term, in (3), in the L2H model. But it is unnatural to choose the coefficients of
these various terms to make their sum Gc invariant. This is because the gauge interactions
always break the symmetry. Gauge boson exchange Feynman diagrams like that of Fig. 1
give divergent corrections to these couplings, and the corrections do not preserve the Gc

invariance.
We can relax one assumption above slightly. We do not need to assume the vacuum

alignment Σew is along (6). In order to have a collective symmetry argument that one
can already apply in the gauge sector one needs the first and last two rows and columns
to be as in (6). But the central (N − 4) × (N − 4) block does not have to be a diagonal
matrix, only a unitary, symmetric matrix. However, the argument goes through as before:
the components of Π that we identify with the higgs are changed in precisely the way that
the shifts in (18) are modified and the rest of the argument goes through unchanged.

The explicit proof for the case Gf/H = SU(N)/Sp(N) is completely analogous.

3.2 The general case

We turn now to the general case. We assume that Gw contains the electroweak gauge
group Gew = SU(2)×U(1), with Gew ⊂ H. We further assume that a subset of goldstone
bosons can be identified with the higgs field. We consider a term in the Lagrangian that is
both symmetric under Gew and has a collective symmetry Gc. We show in the appendix
that we only need to consider semi-simple Gc, which we assume henceforth.

That the higgs transforms linearly under the electroweak gauge group means that there
is a doublet h in Π that transforms as

δεh = iεa τa

2
h + iε

1
2
h (22)

under SU(2)× U(1). Under a group Gc ∈ Gf h transforms non-linearly,

δηh = ηmxm + · · · (23)

where the implicit sum over m is over all generators in Gc, for some two component complex
vectors xm and the ellipses stand for terms at least linear in h. One can redefine the basis
of generators in Gc so that xm = 0 for m ≥ 5 and xm for m = 1, · · · , 4 are unit vectors,
with m = 1, 3 real and m = 2, 4 purely imaginary. Now consider the commutator,

(δηδε − δεδη)h = iεaηm τa

2
xm + iεηm 1

2
xm + · · · (24)

The commutator is again a non-linear transformation, a linear combination of the same
four generators in Gc that shift the higgs. In terms of the Lie algebra of Gf , denoting these
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⇒generators by Xi, with2 i = 1, 2 and the generators of Gew by Qa and Y , we read off

[Qa, X i] =
i

2
(τa)ijXj , [Y, Xi] =

i

2
Xi (25)

This is precisely the statement in Eq. (21), derived there from the explicit form of matrices,
that the generators transform as tensors of Gew with the same quantum numbers as the
higgs doublet, but we see now that it holds more generally, independently of those explicit
matrix representations.

Since there is no semi-simple Lie algebra of rank 4, there must be additional genera-
tors, and [Xi, Xj ] must give some of these additional generators. Denote a non-vanishing
commutator by X̂ij = [Xi, Xj ]. Using the Jacobi identity we see that

[Qa, X̂ij ] = [Qa, [Xi, Xj ]] (26)

= [Xi, [Qa, Xj ]]− [Xj , [Qa, X i]] (27)

=
i

2
(σa)jkXik − i

2
(σa)ikXjk (28)

So these generators also satisfy an equation like (21) but transform in a representation in
the tensor product of two doublets. Continuing this way, considering commutators of the
generators we have so far, we can eventually generate the complete Lie algebra and find
that it breaks into sectors classified by irreducible representations under Gew.

We can use this to show that invariants under Gc break into a sum of terms separately
invariant under Gew. Any non-trivial invariant must be a product of two combination of
fields, one transforming in some irreducible representation R of Gc and the other as the
complex conjugate R̄. But from the previous paragraph it follows that under Gew the
representation R breaks into a direct sum R = r1 ⊕ r2 ⊕ · · · of at least two irreducible
representations of Gew. Therefore the product R × R̄, contains the sum of at least two
invariants under Gew, r1 × r̄1 and r2 × r̄2. Since Gc is not a symmetry of the theory
(because the kinetic energy term for the goldstone bosons is not invariant), the two (or
more) Gew invariants can be summed into a Gc invariant only by fine tuning coefficients
in the Lagrangian. This completes the argument.

It may not be self-evident that any non-trivial representation of Gc breaks into two
or more representations under Gew. This can be shown by noting that the roots of the
Lie algebra, that is the weights of the adjoint representation, of Gc break into a sum of
irreducible representations of Gew, precisely the same representations that the generators
fall into.3 Then by following the same procedure as in establishing branching rules for

2The index i runs over 1,2 because the hermitian matrices break into a symmetric and an antisymmetric
part, corresponding to the two real and two imaginary components of xm, and also to the real and imagnary
components of the higgs doublet.

3This follows form considering the standard map T A → |T A〉 of the generators of Gf , with T A|T B〉 =
|[T A, T B ]〉. Then Qa|Xi〉 = i/2(σa)ij |Xj〉 and so on for the other generators of Gc.
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⇒ i, j  = 1, ... , 4
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Can we get around it by clever model building? 
No. Generalize to any Little Higgs model: 
Assumptions:

1. G → H
2. Weakly gauged Gw ⊂ G, contains Gew,  Gew ⊆ H
3. There is a higgs, h, in G/H
4. Collective symmetry group Gc ⊂ G, with h transforming nonlinearly
5. There is a term in the lagrangian that is symmetric under both Gew and Gc

subgroup. It follows that a gauge invariant term in the Lagrangian that is also invariant
under Gc is a sum of terms that are individually gauge invariant. The only exception is
when the term is constructed of fields that are separately SU(2) invariant, as is the case of
the λ2 mass term, in (3), in the L2H model. But it is unnatural to choose the coefficients of
these various terms to make their sum Gc invariant. This is because the gauge interactions
always break the symmetry. Gauge boson exchange Feynman diagrams like that of Fig. 1
give divergent corrections to these couplings, and the corrections do not preserve the Gc

invariance.
We can relax one assumption above slightly. We do not need to assume the vacuum

alignment Σew is along (6). In order to have a collective symmetry argument that one
can already apply in the gauge sector one needs the first and last two rows and columns
to be as in (6). But the central (N − 4) × (N − 4) block does not have to be a diagonal
matrix, only a unitary, symmetric matrix. However, the argument goes through as before:
the components of Π that we identify with the higgs are changed in precisely the way that
the shifts in (18) are modified and the rest of the argument goes through unchanged.

The explicit proof for the case Gf/H = SU(N)/Sp(N) is completely analogous.

3.2 The general case

We turn now to the general case. We assume that Gw contains the electroweak gauge
group Gew = SU(2)×U(1), with Gew ⊂ H. We further assume that a subset of goldstone
bosons can be identified with the higgs field. We consider a term in the Lagrangian that is
both symmetric under Gew and has a collective symmetry Gc. We show in the appendix
that we only need to consider semi-simple Gc, which we assume henceforth.

That the higgs transforms linearly under the electroweak gauge group means that there
is a doublet h in Π that transforms as

δεh = iεa τa

2
h + iε

1
2
h (22)

under SU(2)× U(1). Under a group Gc ∈ Gf h transforms non-linearly,

δηh = ηmxm + · · · (23)

where the implicit sum over m is over all generators in Gc, for some two component complex
vectors xm and the ellipses stand for terms at least linear in h. One can redefine the basis
of generators in Gc so that xm = 0 for m ≥ 5 and xm for m = 1, · · · , 4 are unit vectors,
with m = 1, 3 real and m = 2, 4 purely imaginary. Now consider the commutator,

(δηδε − δεδη)h = iεaηm τa

2
xm + iεηm 1

2
xm + · · · (24)

The commutator is again a non-linear transformation, a linear combination of the same
four generators in Gc that shift the higgs. In terms of the Lie algebra of Gf , denoting these
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⇒generators by Xi, with2 i = 1, 2 and the generators of Gew by Qa and Y , we read off

[Qa, X i] =
i

2
(τa)ijXj , [Y, Xi] =

i

2
Xi (25)

This is precisely the statement in Eq. (21), derived there from the explicit form of matrices,
that the generators transform as tensors of Gew with the same quantum numbers as the
higgs doublet, but we see now that it holds more generally, independently of those explicit
matrix representations.

Since there is no semi-simple Lie algebra of rank 4, there must be additional genera-
tors, and [Xi, Xj ] must give some of these additional generators. Denote a non-vanishing
commutator by X̂ij = [Xi, Xj ]. Using the Jacobi identity we see that

[Qa, X̂ij ] = [Qa, [Xi, Xj ]] (26)

= [Xi, [Qa, Xj ]]− [Xj , [Qa, X i]] (27)

=
i

2
(σa)jkXik − i

2
(σa)ikXjk (28)

So these generators also satisfy an equation like (21) but transform in a representation in
the tensor product of two doublets. Continuing this way, considering commutators of the
generators we have so far, we can eventually generate the complete Lie algebra and find
that it breaks into sectors classified by irreducible representations under Gew.

We can use this to show that invariants under Gc break into a sum of terms separately
invariant under Gew. Any non-trivial invariant must be a product of two combination of
fields, one transforming in some irreducible representation R of Gc and the other as the
complex conjugate R̄. But from the previous paragraph it follows that under Gew the
representation R breaks into a direct sum R = r1 ⊕ r2 ⊕ · · · of at least two irreducible
representations of Gew. Therefore the product R × R̄, contains the sum of at least two
invariants under Gew, r1 × r̄1 and r2 × r̄2. Since Gc is not a symmetry of the theory
(because the kinetic energy term for the goldstone bosons is not invariant), the two (or
more) Gew invariants can be summed into a Gc invariant only by fine tuning coefficients
in the Lagrangian. This completes the argument.

It may not be self-evident that any non-trivial representation of Gc breaks into two
or more representations under Gew. This can be shown by noting that the roots of the
Lie algebra, that is the weights of the adjoint representation, of Gc break into a sum of
irreducible representations of Gew, precisely the same representations that the generators
fall into.3 Then by following the same procedure as in establishing branching rules for

2The index i runs over 1,2 because the hermitian matrices break into a symmetric and an antisymmetric
part, corresponding to the two real and two imaginary components of xm, and also to the real and imagnary
components of the higgs doublet.

3This follows form considering the standard map T A → |T A〉 of the generators of Gf , with T A|T B〉 =
|[T A, T B ]〉. Then Qa|Xi〉 = i/2(σa)ij |Xj〉 and so on for the other generators of Gc.

11

⇒ i, j  = 1, ... , 4

That is, X i  are tensors under SU(2) × U(1), transforming just like the higgs doublet.
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⇒generators by Xi, with2 i = 1, 2 and the generators of Gew by Qa and Y , we read off
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This is precisely the statement in Eq. (21), derived there from the explicit form of matrices,
that the generators transform as tensors of Gew with the same quantum numbers as the
higgs doublet, but we see now that it holds more generally, independently of those explicit
matrix representations.
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So these generators also satisfy an equation like (21) but transform in a representation in
the tensor product of two doublets. Continuing this way, considering commutators of the
generators we have so far, we can eventually generate the complete Lie algebra and find
that it breaks into sectors classified by irreducible representations under Gew.

We can use this to show that invariants under Gc break into a sum of terms separately
invariant under Gew. Any non-trivial invariant must be a product of two combination of
fields, one transforming in some irreducible representation R of Gc and the other as the
complex conjugate R̄. But from the previous paragraph it follows that under Gew the
representation R breaks into a direct sum R = r1 ⊕ r2 ⊕ · · · of at least two irreducible
representations of Gew. Therefore the product R × R̄, contains the sum of at least two
invariants under Gew, r1 × r̄1 and r2 × r̄2. Since Gc is not a symmetry of the theory
(because the kinetic energy term for the goldstone bosons is not invariant), the two (or
more) Gew invariants can be summed into a Gc invariant only by fine tuning coefficients
in the Lagrangian. This completes the argument.

It may not be self-evident that any non-trivial representation of Gc breaks into two
or more representations under Gew. This can be shown by noting that the roots of the
Lie algebra, that is the weights of the adjoint representation, of Gc break into a sum of
irreducible representations of Gew, precisely the same representations that the generators
fall into.3 Then by following the same procedure as in establishing branching rules for

2The index i runs over 1,2 because the hermitian matrices break into a symmetric and an antisymmetric
part, corresponding to the two real and two imaginary components of xm, and also to the real and imagnary
components of the higgs doublet.

3This follows form considering the standard map T A → |T A〉 of the generators of Gf , with T A|T B〉 =
|[T A, T B ]〉. Then Qa|Xi〉 = i/2(σa)ij |Xj〉 and so on for the other generators of Gc.
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⇒ i, j  = 1, ... , 4

No semi-simple Lie algebra of rank 4  ⇒ commutators don’t close: X̂ ij ≡ [X i, Xj]

[Qa, X̂ ij ] =
i

2
(σa)jkX̂ ik − i

2
(σa)ikX̂jk

Hence, the generators of Gc form a reducible representation of Gew. 
Hence the invariant under Gc is a sum of 2 or more terms separately invariant under Gew.

and so on until closure

That is, X i  are tensors under SU(2) × U(1), transforming just like the higgs doublet.
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Complete the NoGo argument: 

1. Gw ⊂ G is of the form
∏

i Gi

2. For each Gi assume a collective symmetry, Gc
i , such that [Gi, Gc

i ] = 0

Then, if        are the collective symmetry generators of the Yukawa termXn
Y

[Qa, Xn
Y ] = i

2 (σa)nmXm
Y is inconsistent with [Qa

i , Xn
Y ] = 0

The Kaplan-Schmaltz model evades the no-go argument. 
It gauges Gc

Y.       , and avoids eating the higgs by having extra doublets. 
Custodial symmetry does not arise by turning off the gauge coupling.

3. Yukawa term invariant under a collective symmetry group Gc
Y.       and under Gw

Hence an invariant Yukawa either 
• sums over terms related by Gc

Y.       that are independently gauge invariant 
or 
• has Gc

Y.               as subgroup of the gauge group that hence does not commute with Gc
Y.    . 

(hence gauging X, hence higgs eaten unless doubling as in KS model)
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The End
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How does Kaplan-Schmaltz evade the theorem?

Review the model: SU(3)× SU(3)/SU(2)× SU(2) by (3,1) + (1,3)

gauge diagonal SU ( 3) subgroup

Yukawa coupling is invariant under the full gauged symmetry:  no fine tuning

• The proof above assumes there is one custodial symmetry group for each gauged subgroup

• For that specific custodial symmetry there is one specific higgs-shift generator

• KS has two different custodial groups for the same gauge subgroup 

• there is no obvious collective symmetry

• the two custodial groups appear by turning off the coupling of either (3,1) or (1,3)
independently to the gauge vector bosons (not by taking g → 0)

• by construction our proof (that considers each gauge group separately) works by
turning off  all but one gauge couplings
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