CP Violation Studies in the B⁰_s System at DØ

Rick Van Kooten Indiana University Representing the DØ Collaboration

35th International Conference on High Energy Physics Paris, France 24 July 2010

• In decay: $|\mathcal{A}_f|^2 \neq |\bar{\mathcal{A}}_{\bar{f}}|^2$ Assume no *CP* violation in decay

Neutral Meson Mixing

Particularly for B⁰_s

Weak Eigenstates propagate according to Schrodinger:

$$i \frac{d}{dt} \begin{pmatrix} B_{s}^{0} \\ \bar{B}_{s}^{0} \end{pmatrix} = \begin{pmatrix} M - \frac{i\Gamma}{2} & M_{12} - \frac{i\Gamma_{12}}{2} \\ M_{12}^{\star} - \frac{i\Gamma_{12}^{\star}}{2} & M - \frac{i\Gamma}{2} \end{pmatrix} \begin{pmatrix} B_{s}^{0} \\ \bar{B}_{s}^{0} \end{pmatrix} \quad \bar{B}_{s}^{0} \begin{pmatrix} b & u,c,t & V_{ts} & s \\ W^{\dagger} & \downarrow & V_{ts} & V_{ts} \end{pmatrix} B_{s}^{0}$$

Diagonalize

Mass Eigenstates:
$$|B_{s}^{H}\rangle = p |B_{s}^{0}\rangle - q |\overline{B}_{s}^{0}\rangle |B_{s}^{L}\rangle = p |B_{s}^{0}\rangle + q |\overline{B}_{s}^{0}\rangle$$
If CP conserved in
mixing, $p=q$ $|B_{s}^{H}\rangle = |B_{s}^{odd}\rangle$ $|B_{s}^{L}\rangle = |B_{s}^{even}\rangle$

$$\Delta m_{s} = M_{H} - M_{L} \sim 2 |M_{12}|$$

$$\Delta \Gamma_{s}^{CP} = \Gamma_{even} |\Gamma_{odd} \sim 2 |\Gamma_{12}|$$

$$\Delta \Gamma_{s} = \Gamma_{L} - |\Gamma_{H}| \sim 2 |\Gamma_{12}| \cos \phi_{s}$$

$$\Gamma_{s} = \frac{\Gamma_{L} + \Gamma_{H}}{2} ; \quad \overline{\tau} = \frac{1}{\Gamma_{s}} \qquad \int \phi_{s}^{SM} = \arg \left[-\frac{M_{12}}{\Gamma_{12}}\right] \sim 0.004 \text{ in SM}$$
CP-violating!

Neutral Meson Mixing

Weak Eigenstates propagate according to Schrodinger:

$$i \frac{d}{dt} \begin{pmatrix} B_{s}^{0} \\ \bar{B}_{s}^{0} \end{pmatrix} = \begin{pmatrix} M - \frac{i\Gamma}{2} & M_{12} - \frac{i\Gamma_{12}}{2} \\ M_{12}^{\star} - \frac{i\Gamma_{12}^{\star}}{2} & M - \frac{i\Gamma}{2} \end{pmatrix} \begin{pmatrix} B_{s}^{0} \\ \bar{B}_{s}^{0} \end{pmatrix}$$

Diagonalize

Mass Eigenstates:
$$|B_{s}^{H}\rangle = p |B_{s}^{0}\rangle - q |\overline{B}_{s}^{0}\rangle |B_{s}^{L}\rangle = p |B_{s}^{0}\rangle + q |\overline{B}_{s}^{0}\rangle$$
If CP conserved in
mixing, $p=q$ $|B_{s}^{H}\rangle = |B_{s}^{odd}\rangle$ $|B_{s}^{L}\rangle = |B_{s}^{even}\rangle$

$$\Delta m_{s} = M_{H} - M_{L} \sim 2 |M_{12}| = 17.77 \pm 0.12 \text{ ps}^{-1} \qquad \text{Precision!} \text{ (better than theory)}$$

$$\Delta \Gamma_{s}^{CP} = \Gamma_{even} |\Gamma_{odd} \sim 2 |\Gamma_{12}| \qquad \text{Tiny for } B_{d}^{0} \text{ meson, but} \text{ not for } B_{d}^{0} \text{ meson, but} \text{ not for } B_{s}^{0} ! \text{ eigenstates propagate} \text{ with different lifetimes!}$$

$$\Gamma_{s} = \frac{\Gamma_{L} + \Gamma_{H}}{2} ; \quad \overline{\tau} = \frac{1}{\Gamma_{s}} \qquad -\phi_{s}^{SM} = \arg \left[-\frac{M_{12}}{\Gamma_{12}}\right] \sim 0.004 \text{ in SM}$$

$$2b$$

Neutral Meson Mixing

Weak Eigenstates propagate according to Schrodinger:

$$i \frac{d}{dt} \begin{pmatrix} B_{s}^{0} \\ \bar{B}_{s}^{0} \end{pmatrix} = \begin{pmatrix} M - \frac{i\Gamma}{2} & M_{12} - \frac{i\Gamma_{12}}{2} \\ M_{12}^{\star} - \frac{i\Gamma_{12}^{\star}}{2} & M - \frac{i\Gamma}{2} \end{pmatrix} \begin{pmatrix} B_{s}^{0} \\ \bar{B}_{s}^{0} \end{pmatrix}$$

Diagonalize

Mass Eigenstates: $|B_{s}^{H}\rangle = p |B_{s}^{0}\rangle - q |B_{s}^{0}\rangle |B_{s}^{L}\rangle = p |B_{s}^{0}\rangle + q |B_{s}^{0}\rangle$ If CP conserved in
mixing, p = q $|B_{s}^{H}\rangle = |B_{s}^{odd}\rangle$ $|B_{s}^{L}\rangle = |B_{s}^{even}\rangle$

 $\Delta m_{s} = M_{H} - M_{L} \sim 2 |M_{12}| \qquad \text{Sensitive to new physics}$ $\Delta \Gamma_{s}^{CP} = \Gamma_{even} |\Gamma_{odd} \sim 2 |\Gamma_{12}| \qquad \text{Not sensitive to new physics}$ $\Delta \Gamma_{s} = \Gamma_{L} - |\Gamma_{H}| \sim 2 |\Gamma_{12}| \cos \phi_{s} \qquad Very \text{ sensitive to new physics}$ $\Gamma_{s} = \frac{\Gamma_{L} + \Gamma_{H}}{2} \quad ; \quad \overline{\tau} = \frac{1}{\Gamma_{s}} \qquad \int \phi_{s}^{SM} = \arg \left[-\frac{M_{12}}{\Gamma_{12}}\right] \sim 0.004 \text{ in SM}$

CP Violation in B_s^0 System

$$\begin{pmatrix} d'\\s'\\b' \end{pmatrix} = \begin{pmatrix} V_{ud} & V_{us}\\V_{cd} & V_{cs}\\V_{td} & V_{ts} \end{pmatrix} \begin{pmatrix} V_{ub}\\V_{cb}\\V_{tb} \end{pmatrix} \begin{pmatrix} d\\s\\b \end{pmatrix}$$

• CP violation in SM occurs in complex phases in unitary CKM matrix; new physics: plenty of new phases!!

$$\begin{array}{ll} \textit{B}_{s} \text{ unitarity}\\ \text{condition} \end{array} \quad \textit{V}_{us}\textit{V}_{ub}^{*} + \textit{V}_{cs}\textit{V}_{cb}^{*} + \textit{V}_{ts}\textit{V}_{tb}^{*} = 0\\ & \text{Golden mode,}\\ \textbf{Tevatron}\\ \textit{B}_{s}^{0} \longrightarrow \textit{J}/\psi\phi\\ & \swarrow \textit{Sin 2}\beta_{s} & \textbf{Sin 3}\beta_{s} & \textbf{S$$

CP Violation in B_s^0 System

$$\begin{pmatrix} d'\\s'\\b' \end{pmatrix} = \begin{pmatrix} V_{ud} & V_{us}\\V_{cd} & V_{cs}\\V_{td} & V_{ts} \end{pmatrix} \begin{pmatrix} V_{ub}\\V_{cb}\\V_{tb} \end{pmatrix} \begin{pmatrix} d\\s\\b \end{pmatrix}$$

 CP violation in SM occurs in complex phases in unitary CKM matrix; new physics: plenty of new phases!!

 $\begin{array}{ll} \textbf{B}_{\rm s} \text{ unitarity} & V_{us}V_{ub}^* + V_{cs}V_{cb}^* + V_{ts}V_{tb}^* = 0 \\ \text{condition} & \end{array}$

CP violation through interference of diagrams with and w/o mixing

CP Violation in $B_s^0 \rightarrow J/\psi \phi$

- Decays into two vector mesons that are either CP-odd (L=1) or CP-even (L=0,2)
- Time-dependent angular distributions allow separation of components
- Simultaneous fit to two lifetimes $(1/\Gamma_H, 1/\Gamma_L)$ and three angles "transversity basis"
 - A_{\perp} transverse perp. \rightarrow *CP*-odd
 - A_{\parallel} transverse para. \rightarrow *CP*-even

CP Violation in $B_s^0 \rightarrow J/\psi\phi$

- 3. Decay product angles
 - Detector acceptance distorts the angular distributions
 - Use MC simulation to determine efficiency and include in fit
 - Reweight MC to match data kinematics

- Assume that (K^+K^-) system in the decay $B^0_s \to J/\psi K^+ K$ is in a *P*-wave
- Any S-wave?

CP Violation in $B^0_s \rightarrow J/\psi \phi$

- 3. Decay product angles
 - Detector acceptance distorts the angular distributions
 - Use MC simulation to determine efficiency and include in fit
 - Reweight MC to match data

200F

150E

100F

50F

ct > 0.02 cm

-0.6

-0.4

400

CP Violation in $B^0_s o J/\psi \phi$

- 4. Tag the flavor: B_s^0 or \overline{B}_s^0 at time of production
 - Opposite-side tagging: electron, muon charge; sec. vertex charge (plus including lepton), event charge (opp. tracks)

- Calibrated using B^0_d and B^\pm , probability correct $P=(1+\mathcal{D})/2$
- 5. Constraints
 - Gaussian constraint for oscillation frequency: $\Delta M_s = 17.77 \pm 0.12 \, {
 m ps}^{-1}$
 - Strong phases between polarization amplitudes $\delta_1 = -\delta_{\parallel} + \delta_{\perp}$ $\delta_2 = -\delta_0 + \delta_{\perp}$

Gronau & Rosner: $B_d^0 \rightarrow J/\psi K^*$: magnitudes of polarization amplitudes (PL B**336**, 321 (2008)) $B_s^0 \rightarrow J/\psi \phi$ should be similar, strong phases equal to within10 deg.

CP Violation in $B^0_s o J/\psi \phi$

- 6. Checks:
 - Full MC simulations with $\phi_s^{J/\psi\phi}
 eq 0, \Delta\Gamma_s
 eq 0$
 - no significant biases observed
 - Ensemble of toy MC samples, each experiment, same statistics as data
 - \rightarrow no significant biases, check uncertainties (although sig. biases if δ_i allowed to float)
 - → determine adjustment for correct statistical coverage of CL regions
 - → effects of external systematic uncertainties

Semileptonic Charge Asymmetry

- "Right-sign" decay: $B \to \mu^+ X$
- "Wrong-sign" decay: $\overline{B} \to \mu^+ X$ only possible via flavor oscillation of B^0_d and B^0_s

$$a_{sl}^{b} = \frac{\Gamma(\overline{B} \to \mu^{+}X) - \Gamma(B \to \mu^{-}X)}{\Gamma(\overline{B} \to \mu^{+}X) + \Gamma(B \to \mu^{-}X)} = A_{sl}^{b} = \frac{1 - |q/p|^{4}}{1 + |q/p|^{4}}$$
PRL 97, 151801 (2006)
Semileptonic charge asymmetry

Another way to test measure CP violation!

Dimuon Charge Asymmetry

• Recall that measured dimuon asymmetry is a linear combination:

$$A_{\rm sl}^b = 0.506 \, a_{\rm sl}^d + 0.494 \, a_{\rm sl}^s$$

Consistency with Other Results

• Consistent with world average of $a_{sl}^d = (-0.47 \pm 0.46)\%$ from *B* factories (BaBar, Belle, CLEO; HFAG)

Extracting a_{sl}^s

N.B.: allows some level of — CP violation in B_d^0 as well in rest of what follows

• Input world average of $a_{sl}^d = (-0.47 \pm 0.46)\%$ from *B* factories into: $A_{sl}^b = (0.506 \pm 0.043)a_{sl}^d + (0.494 \pm 0.043)a_{sl}^s$

From dimuon asymmetry:

$$a_{\rm sl}^s = (-1.46 \pm 0.75)\%$$

c.f. $a_{sl}^s(SM) =$ $(-0.0021 \pm 0.0006)\%$

Combine with DØ independent measurement of $a^s_{
m sl}$ from $B^0_s o D_s \mu
u$

Combined:

$$u_{\rm sl}^s({\rm D}\emptyset) = (-1.00 \pm 0.59)\%$$

DØ Note 6093-CONF

• Allows for interesting comparison/combination:

$$a_{\rm sl}^s = \frac{\Delta\Gamma_s}{\Delta M_s} \tan \phi_s \qquad \phi_s = \phi_s^{SM} + \phi_s^{NP}$$

$$(0.0042 \pm 0.0014) \qquad \uparrow$$
Same new physics phase as in $\phi_s^{J/\psi\phi}$
if new physics only in M_{12} of $B_{\rm s}^0$ system

affecting M_{12} in the B_s^0 system

Combination

Summary

• Using 6.1 fb⁻¹ of data, DØ has made a preliminary update of their previously published (with 2.8 fb⁻¹) $B_s^0 \rightarrow J/\psi\phi$ analysis to find:

$$\begin{split} \Delta \Gamma_s &= 0.15 \pm 0.06 \pm 0.01 \, \mathrm{ps}^{-1} \\ \phi_s^{J/\psi\phi} &= -0.76^{+0.38}_{-0.36} \pm 0.02 \end{split} \qquad \textbf{CP-violating phase} \\ 0.014 &< \Delta \Gamma_s < 0.263 \, \mathrm{ps}^{-1} \qquad -0.235 < \Delta \Gamma_s < -0.040 \, \mathrm{ps}^{-1} \\ -1.65 &< \phi_s^{J/\psi\phi} < 0.24 \qquad 1.14 < \phi_s^{J/\psi\phi} < 2.93 \end{aligned} \qquad \textbf{at 95\% CL}$$

- Consistent with the *CP*-violating a_{sl}^s semileptonic charge asymmetry for B_s^0 extracted from the DØ dimuon semileptonic charge asymmetry $(A_{sl}^b > 3\sigma \text{ from SM})$ and from DØ $B_s^0 \rightarrow D_s \mu \nu$ asymmetry analysis
- Combinations of DØ results indicate consistency with SM in the B^0_s system at the level of 6 7.5%
- Future: add data, add modes (e.g., $B_s^0 \rightarrow J/\psi f_0$), same-side tagging, combine with CDF

Backups

	Full Sample	First 2.8 fb $^{-1}$	Last 3.3 fb $^{-1}$	
All Candidates	82808	47442	35366	
Signal	3435 ± 84	1999 ± 66	1449 ± 50	
$B_s^0 { m Mass} ({ m MeV})$	5362.4 ± 0.8	5362.2 ± 1.0	5362.7 ± 1.2	
B_s^0 Mass Width (MeV)	30.4 ± 0.7	29.5 ± 0.9	31.7 ± 1.1	
Proper length error scale	1.268 ± 0.006	1.261 ± 0.007	1.271 ± 0.008	
$ar{ au}_{s}(\mathrm{ps})$	1.47 ± 0.04	1.45 ± 0.07	1.46 ± 0.06	
$\Delta\Gamma_s({ m ps}^{-1})$	0.15 ± 0.06	0.23 ± 0.08	0.07 ± 0.07	
$A_{\perp}\left(0 ight)$	0.44 ± 0.03	0.42 ± 0.04	0.47 ± 0.04	
$ A_0(0) ^2$ – $ A_{ }(0) ^2$	0.35 ± 0.03	0.32 ± 0.04	0.40 ± 0.04	
$\phi_s^{J/\psi\phi}$	0.76 ± 0.37	0.86 ± 0.33	$0.37 \pm \underline{0.81}$	

	$A_{\perp}(0)$	$\Delta\Gamma_s$	$\phi_s^{J/\psi\phi}$
$ar{ au}_s$	- 0.40	-0.03	0.71
$A_{\perp}(0)$		-0.54	-0.36
$\Delta \Gamma_s$			-0.18

Weighting & Acceptance Corrections

Systematics

Source	$ar{ au}_s$	$\Delta\Gamma_s$	$A_{\perp}(0)$	$\phi_s^{J/\psi\phi}$
	\mathbf{ps}	${ m ps}^{-1}$		
Matching the MC kinematics to data	± 0.001	± 0.001	± 0.001	± 0.01
Acceptance function	± 0.01	± 0.01	± 0.01	± 0.01
Flavor tagging parameters	± 0.001	± 0.001	± 0.001	± 0.01
Total	± 0.01	± 0.01	± 0.01	± 0.02

No Flavor Tag

$$\Delta \Gamma_s = 0.15 \pm 0.06 \,\mathrm{ps}^{-1} \qquad \Delta \Gamma_s = -0.15 \pm 0.06 \,\mathrm{ps}^{-1}$$

$$\phi_s^{J/\psi\phi} = \pm (0.90 \pm 0.42) \qquad \phi_s^{J/\psi\phi} = \pm (2.24 \pm 0.42)$$

Constrain strong phases to values of $B_d^0 \rightarrow J/\psi K^*$ but more weakly, Gaussian constraint of $\pm \pi/5$

$$\Delta \Gamma_s = 0.19 \pm 0.07^{+0.02}_{-0.01}$$
$$\phi_s^{J/\psi\phi} = -0.57^{+0.24+0.07}_{-0.30-0.02}$$

Not adjusted for coverage or systematics

Comparison to Previous Results

- Improvements in the track reconstruction efficiency
- Refinement in the vertex fitting and in the proper time uncertainty calculation
- Detector acceptance corrections derived for the present data set
- Gaussian constraint for oscillation frequency (instead of fixed)
- Constrain strong phases to world average values for $B^0_d \rightarrow J/\psi K^*$

Published result, no strong phase δ_i constraint

