

Renormalization of the baryon axial vector current in large- N_c

María de los Angeles Hernández Ruíz ^{1,2}

(1) Instituto de Física, Universidad Autónoma de San Luis Potosí, Av. Manuel Nava 6 Zona Universitaria 78290, San Luis Potosí SLP, México.

(2) Facultad de Ciencias Químicas, Universidad Autónoma de Zacatecas Apartado Postal 585, 98060 Zacatecas, Zac. México.

Abstract

The baryon axial vector current is computed at one-loop order in heavy baryon chiral perturbation theory in the large- N_c limit, where N_c is the number of colors. Loop graphs with octet and decuplet intermediate states cancel to various orders in N_c as a consequence of the large- N_c spin-flavor symmetry of QCD baryons. We present a preliminary study of the convergence of the chiral expansion with $1/N_c$ corrections in the case of g_A in QCD.

1 Introduction

The nonrelativistic quark model has been a useful tool in the study of hadrons. Baryons and mesons are described by quantum mechanical wave functions for nonrelativistic constituent quarks. The lowest lying baryons, the $8_{1/2}$ and $10_{3/2}$, are three quark states with wave functions which are completely antisymmetric in color, and completely symmetric in position and spin-flavor.

The chiral perturbation theory exploits the symmetry of the QCD Lagrangian under $SU(3)_L \times SU(3)_R \times U(1)_V$ transformations of the three flavors of light quarks in the limit $m_q \to 0$. Chiral symmetry is spontaneously broken by the QCD vacuum to the vector subgroup $SU(3)_V \times U(1)_V$, giving rise to an octet of Goldstone bosons. Physical observables can be expanded order by order in powers of p^2/λ_{χ}^2 and $m_{\pi}^2/\Lambda_{\chi}^2$, where p is the meson momentum, m_{Π} is the mass of the Goldstone boson, and Λ_{χ} is the scale of chiral symmetry breaking. When chiral perturbation theory is extended to include baryons, it is convenient to introduce velocity-dependent baryon fields, so that the expansion of the baryon chiral Lagrangian in powers of m_q and $1/M_B$ (where M_B is the baryon mass) is manifest [1,2]. This so-called heavy baryon chiral perturbation theory was first applied to compute the chiral logarithmic corrections to the baryon axial vector current for baryon semileptonic decays due to meson loops [1,2]. While these corrections are large when only octet baryon intermediate states are kept [1], the inclusion of decuplet baryon intermediate states yields sizable cancellations between oneloop corrections [2]. This phenomenological observation can be rigorously explained in the context of the $1/N_c$ expansion. On the other hand, the generalization of QCD from $N_c = 3$ to $Nc \gg 3$ colors, known as the large-Nc limit, has also led to remarkable insights into the understanding of the nonperturbative QCD dynamics of hadrons. In the large- N_c limit the meson sector of QCD consists of a spectrum of narrow resonances and meson-meson scattering amplitudes are suppressed by powers of $1/\sqrt{N_c}$ [3]. The baryon sector of QCD, on the contrary, is more subtle to analyze because in the large-No limit an exact contracted $SU(2N_f)$ spin-flavor symmetry (where Nf is the number of light quark flavors) emerges. This symmetry can be used to classify large-Nc baryon states and matrix elements. Applications of this formalism to the computation of static properties of baryons range from masses, couplings [3,4] to magnetic moments [5], to name but a few.

2 The chiral lagrangian for baryons in the $1/N_c$ expansion

$$\mathcal{L}_{\text{baryon}} = i\mathcal{D}^0 - \mathcal{M}_h + Tr(\mathcal{A}^k \lambda^c) A^{kc} \frac{1}{N_c} Tr\left(\mathcal{A}^k \frac{2I}{\sqrt{6}}\right) A^k + \dots$$
(1)

where

$$\mathcal{D}^0 = \partial^0 1 + Tr(\mathcal{V}^0 \lambda^c) T^c \tag{2}$$

Each term in Eq. (1) involves a baryon operator which can be expressed as a polynomial in the SU(6) spin-flavor generators [9]

$$J^k = q^{\dagger} \frac{\sigma^k}{2} q, \quad T^c = q^{\dagger} \frac{\lambda^c}{2} q, \quad G^{kc} = q^{\dagger} \frac{\sigma^i \lambda^a}{2} q$$
 (3)

where q^{\dagger} and q are SU(6) operators that create and annihilate states in the fundamental representation of SU(6), and σ^k and λ^c are the Pauli spin and Gell-Mann flavor matrices, respectively. In Eqs. (1)-(3) the flavor indices run from one to nine so the full meson nonet π , K, η , and η is considered. The baryon operator $\mathcal{M}_{hyperfine}$ denotes the spin splittings of the tower of baryon states with spins $1/2, \ldots, N_c/2$ in the flavor representations. Furthermore, the vector and axial vector combinations of the meson fields,

$$\mathcal{V}^{0} = \frac{1}{2} (\xi \partial^{0} \xi^{\dagger} + \xi^{\dagger} \partial^{0} \xi),$$

$$\mathcal{A}^{k} = \frac{i}{2} (\xi \nabla^{k} \xi^{\dagger} - \xi^{\dagger} \nabla^{k} \xi),$$

$$(4)$$

^aR. Flores-Mendieta, C. P. Hofmann, E. Jenkins, and A. V. Manohar, Phys. Rev. D **62**, 034001 (2000)

couple to baryon vector and axial vector currents, respectively. Here $\xi = \exp[i\Pi(x)/f]$, where $\Pi(x)$ stands for the nonet of

Goldstone boson fields (unless explicitly stated otherwise) and $f \approx 93$ MeV is the meson decay constant.

The QCD operators involved in \mathcal{L}_{baryon} in Eq. (1) have well-defined 1/Nc expansions. Specifically, the baryon axial vector current A^{kc} is a spin-1 object, an octet under SU(3), and odd under time reversal. Its 1/Nc expansion can be written as [4]

$$A^{kc} = a_1 G^{kc} + \sum_{n=2,3}^{N_c} b_n \frac{1}{N_c^{n-1}} \mathcal{D}_n^{kc} + \sum_{3,5}^{N_c} c_n \frac{1}{N_c^{n-1}} \mathcal{O}_n^{kc}, \quad (5)$$

where the \mathcal{D}_n^{kc} are diagonal operators with nonzero matrix elements only between states with the some spin, and the elements \mathcal{O}_n^{kc} are purely off-diagonal operators with nonzero matrix elements only between states with different spin.

$$\mathcal{D}_2^{kc} = J^k T^c, \tag{6}$$

$$\mathcal{O}_3^{kc} = \epsilon^{ijk} \{ J^i, G^{jc} \}, \tag{7}$$

$$\mathcal{D}_3^{kc} = \{J^k, \{J^r, G^{rc}\}\},\tag{8}$$

$$\mathcal{O}_3^{kc} = \{J^2, G^{kc}\} - \frac{1}{2}\{J^k, J^r, G^{rc}\}. \tag{9}$$

Higher order terms can be obtained via $\mathcal{D}_n^{kc} = \{J^2, \mathcal{D}_{n-2}^{kc}\}$ and $\mathcal{O}_n^{kc} = J^2, \mathcal{O}_{n-2}^{kc}$ for $n \geq 4$ the operators \mathcal{O}_{2m}^{kc} ($m = 1, 2, \ldots$) are forbidden in the expansion (5) because they are even under time reversal. Furthermore, the unknown coefficients a_1, b_n , and c_n in Eq. (5) have expansions in powers of $1/N_c$ and are order unity at leading order in the $1/N_c$ expansion.

The matrix elements of the space components of A^{kc} between SU(6) symmetric states give the actual values of the axial vector couplings. For the octet baryons, the axial vector couplings are g_A , as conventionally defined in baryon β —decay experiments, with a normalization such that $g_A \approx 1.27$ and $g_V = 1$ for neutron decay.

3 Renormalization of the baryon axial vector current

One of the earliest applications of Lagrangian (1) consisted in the calculation of nonanalytic meson-loop corrections. The renormalization of the baryon axial vector current is another problem. Aspects of this problem have been discussed in the framework of heavy baryon chiral perturbation theory, the $1/N_c$ expansion, or in a simultaneous expansion in chiral symmetry breaking and $1/N_c$.

The baryon axial vector current A^{kc} is renormalized by the one-loop diagrams displayed in Fig. 1. These loop graphs have a calculable dependence on the ratio Δ/m_{Π} , where $\Delta \equiv M_{\Delta} - M_{N}$ is the decuplet-octet mass difference and m_{Π} is the meson mass.

FIGURE 1: One-loop corrections to the baryon axial vector current

The correction arising from the sum of the diagrams of Figs. 1(a)-1(c), containing the full dependence on the ratio Δ/m_{Π} , was derived^a and reads

$$\delta A^{kc} = \frac{1}{2} \left[A^{ja}, \left[A^{jb}, A^{kc} \right] \right] \Pi_{(1)}^{ab}$$

$$- \frac{1}{2} \left\{ A^{ja}, \left[A^{kc}, \left[\mathcal{M}, A^{jb} \right] \right] \right\} \Pi_{(2)}^{ab}$$

$$+ \frac{1}{6} \left(\left[A^{ja}, \left[\left[\mathcal{M}, \left[\mathcal{M}, A^{jb} \right] \right], A^{kc} \right] \right]$$

$$- \frac{1}{2} \left[\left[\mathcal{M}, A^{ja} \right], \left[\left[\mathcal{M}, A^{jb} \right], A^{kc} \right] \right] \right) \Pi_{(3)}^{ab} + \dots$$

Here $\Pi_{(n)}^{ab}$ is a symmetric tensor which contains meson-loop integrals with the exchange of a single meson: A meson of flavor a is emitted and a meson of flavor b is reabsorbed. $\Pi_{(n)}^{ab}$ descomposes into flavor singlet, flavor b and flavor b representations

$$\Pi_{(n)}^{ab} = F_{\mathbf{1}}^{(n)} \delta^{ab} + F_{\mathbf{8}}^{(n)} d^{ab8} + F_{\mathbf{27}}^{(n)} \left[\delta^{a8} \delta^{b8} - \frac{1}{8} \delta^{ab} - \frac{3}{5} d^{ab8} d^{888} \right].$$
(10)

where

$$F_{\mathbf{1}}^{(n)} = \frac{1}{8} \left[3F^{(n)}(m_{\pi}, 0, \mu) + 4F^{(n)}(m_{K}, 0, \mu) + F^{(n)}(m_{\eta}, 0, \mu) \right],$$

$$F_{\mathbf{8}}^{(n)} = \frac{2\sqrt{3}}{5} \left[\frac{3}{2}F^{(n)}(m_{\pi}, 0, \mu) - F^{(n)}(m_{K}, 0, \mu) - \frac{1}{2}F^{(n)}(m_{\eta}, 0, \mu) \right],$$

$$F_{\mathbf{27}}^{(n)} = \frac{1}{3}F^{(n)}(m_{\pi}, 0, \mu) - \frac{4}{3}F^{(n)}(m_{K}, 0, \mu) + F^{(n)}(m_{\eta}, 0, \mu).$$

In the degeneracy limit $\frac{\Delta}{m_{\Pi}} = 0$ of the general function $F^{(n)}(m_{\Pi}, \Delta, \mu)$, defined as

$$F^{(n)}(m_{\Pi}, \Delta, \mu) \equiv \frac{\partial^n F(m_{\Pi}, \Delta, \mu)}{\partial \delta^n}$$
 (11)

4 Results and Conclusions

we have computed the renormalization of the baryon axial vector current in the framework of heavy baryon chiral perturbation theory in the large-Nc limit. The analysis was performed at one-loop order, where the correction to the baryon axial vector current is given by an infinite series, each term representing a complicated combination of commutators and/or anticommutators of the baryon axial vector current A^{kc} and mass insertions \mathcal{M} . Indeed, our final expressions referring to the degeneracy limit explicitly demonstrate that the double commutator AAA is of order N_c rather than of order N_c^3 , as one would naively expect. The following tables show the numerical values of the g_A axial vector coupling for various semileptonic processes Nc dependence for the flavor singlet, octet, and 27 contributions,

	~						
	Singlet						
$B_i B_j \mathcal{O}N_c^0$	$\mathcal{O}(rac{1}{N_c})$	$\mathcal{O}(\frac{1}{N_c^2})$ $\mathcal{O}(\frac{1}{N_c^3})$ Total					
np = 0.2781	-0.1138	0.1402 -0.0256 0.2789					
$\Sigma^{+}\Lambda$ 0.1302	-0.0396	0.0663 0.0111 0.168					
$\Sigma^-\Lambda$ 0.0875	-0.0266	0.0446 0.0074 0.1129					
Λp -0.1712	0.0837	$-0.0855 \ 0.0389 \ -0.134$					
$\Sigma^{-}n$ 0.0356	0.0014	0.0188 0.0239 0.0797					
$\Xi^-\Lambda$ 0.0386	-0.0423	0.0179 - 0.0483 - 0.0339					
$\Xi^{-}\Sigma^{0}$ 0.1275	-0.0522	$0.0643 - 0.0117 \ 0.127$					
$\Xi^{0}\Sigma^{+}$ 0.2442	-0.0998	0.1231 -0.0225 0.245					
Octet							
B_iB_j $\mathcal{O}N_c^0$	$\mathcal{O}(\frac{1}{N_c})$	$\mathcal{O}(\frac{1}{N^2})$ $\mathcal{O}(\frac{1}{N^3})$ Total					
np -0.047	0.0163	-0.0045 -0.0044 -0.0396					
$\Sigma^{+}\Lambda$ -0.0497	-0.0007	-0.0009 -0.005 -0.0564					
$\Sigma^-\Lambda$ -0.027	-0.0004	-0.0005 -0.003 -0.0309					
Λp -0.0331	-0.006	-0.0269 0.0111 -0.0549					
$\Sigma^{-}n$ -0.0054	-0.0021	0.0037 0.0018 -0.002					
$\Xi^-\Lambda$ 0.0087	-0.0097	0.0204 -0.02349 -0.004					
$\Xi^{-}\Sigma^{0}$ 0.0165	-0.0057	0.0016 0.00156 0.0139					
$\Xi^{0}\Sigma^{+}$ 0.0485	-0.0168	0.0047 0.0045 0.0409					
Flavor 27							
B_iB_j $\mathcal{O}N_c^0$	$\mathcal{O}(\frac{1}{N_c})$	$\mathcal{O}(\frac{1}{N^2})$ $\mathcal{O}(\frac{1}{N^3})$ Total					
np = 0.0002	-0.0002	$\frac{1.6}{0.0014} + 0.0005 + 0.0019$					
$\Lambda p = 0.0049$	0.0023	-0.0046 0.002 0.0046					
$\Xi^{-}\Sigma^{0}$ -0.0025	-0.0018	0.0025 -0.0005 -0.0023					

Acknowledgments

0.0075 - 0.0015 - 0.0066

-0.005

The author would like to express their gratitude to Local Organizing Committee also acknowledge support.

References

 $\Xi^{0}\Sigma^{+}$ -0.0076

- [1] Elizabeth Jenkins and A. V. Manohar, Phys. Lett. B **255**, 558 (1991).
- [2] Elizabeth Jenkins and A. V. Manohar, Phys. Lett. B **259**, 353 (1991).
- [3] Rubén Flores-Mendieta, E. Jenkins y A. V. Manohar, Phys. Rev. D **58**, 094028 (1998).
- [4] Rubén Flores-Mendieta and C. Hofmann, Phys. Rev. D **74**, 094001 (2006).
- [5] Rubén Flores-Mendieta, Phys. Rev. D **80**, 094014 (2009).