

Giampiero Mancinelli Centre de Physique des Particules de Marseille (on behalf of the LHCb collaboration) ICHEP - Paris - July 23rd 2010

Giampiero Mancinelli Centre de Physique des Particules de Marseille (on behalf of the LHCb collaboration) ICHEP - Paris - July 23rd 2010

Search for

New Physics

Rare Heavy

Flavour Decays

at LHCb

with

Yet undiscovered particles can:

- be produced and observed as real particles

- CP violation
- rare decays: $B_{s/d} \rightarrow \mu^+ \mu^-$, $B_d \rightarrow K^{*0} \mu^+ \mu^-$, $B_s \rightarrow \phi \gamma$,...

These two search methods are complementary Flavour Physics is an indirect probe for New Physics

FCNC have a pivotal role as they constitute an ideal environment:

- highly suppressed in the SM, only realized via boxes or penguins
- least amount of SM "pollution"

- NP can show up as the same (or higher) level with respect to the SM

- $b \rightarrow s$ not too constrained by current data

As LHCb is a hadron collider experiment - only exclusive final states useful :(- huge number of these events are triggered :)

I'm so

are

Marseille

LHC & LHCb

<u> Giamp</u>iero Mancinelli

4

Status and Motivations

Analysis Strategy

Reconstruction of all $\mu^+\mu^-$ candidates on L0+HLT triggered events Selection of $B_s \rightarrow \mu^+\mu^-$ as common as possible with the control channels

 $B^+ \rightarrow J/\psi$ ($\mu^+\mu^-$) K^+ , $B \rightarrow J/\psi$ ($\mu^+\mu^-$) K^* ($K^+\pi^-$), $B_{d/s} \rightarrow h^+h'^- \dots$

Each candidate is given a likelihood to be signal or background in a 3D space:

Geometrical Likelihood (GL):

Observables where the vertex detector provides the main discrimination

Invariant Mass:

Power determined by the tracking system resolution/alignment

Muon ID:

Dominated by muon system with information from calorimeters and RICHes Likelihoods are largely uncorrelated.

$$BR = \frac{BR_{cal} \cdot \mathcal{E}_{cal}^{REC} \mathcal{E}_{cal}^{SEL/REC} \mathcal{E}_{cal}^{TRIG/SEL}}{\mathcal{E}_{sig}^{REC} \mathcal{E}_{sig}^{SEL/REC} \mathcal{E}_{sig}^{TRIG/SEL}} \cdot \underbrace{\int_{cal} N_{sig}}{\int_{Bs} N_{cal}} \xrightarrow{N_{cal}} \underbrace{N_{ain \ source \ of \ uncertainty \ (~13 \ \%) \ for \ normalization \ with \ B^+ \rightarrow \ J/\Psi \ K^+ \ (or \ any \ other \ B^+/B_d \ channel)}$$

Plan to use new method to measure fs/fd (orXiv:1004 .3982) at LHC energies

Marseille

CPPM

Mancinelli Giampiero

8

Mass Resolution and GL

Mancine11

The Road to New Physics

All studies on data so far indicate that sensitivity estimate from MC is realistic (e.g. background level)

In absence of signal, 90% C.L. limits:

Current limit improved with < 100 pb^{-1}

Expected Tevatron limit improved with < 200 pb^{-1}

Exclusion of significant enhancement from the SM $(7x10^{-9})$ with <1.0 fb⁻¹

10

Marseille

Introduction

B_d

Modes sensitive to magnetic and vector and axial semileptonic penguin operators

Decay described by three angles $(\theta_1, \phi, \theta_k)$ and diinvariant mass q²

Many variables sensitive to new physics but: $BR = (1.15^{+0.16}_{-0.15}) 10^{-6} \text{ (HFAG)}$ agrees to within ~20% with SM

With first data, focus on forward backward asymmetry

Marseille

AFB now

AFB with 100 pb⁻¹

note : $\sigma(bb)$ meaured to be 1/3 higher than what assumed here

14

Giampiero Mancinelli

AFB 2011

note : $\sigma(bb)$ meaured to be 1/3 higher than what assumed here

15

Giampiero Mancinelli

Current Status


```
BR (b \rightarrow s\gamma) = (315±23 ) 10<sup>-6</sup> (theo) NNLO
BR (b \rightarrow s\gamma) = (355 ± 24 ± 9) 10<sup>-6</sup> (HFAG)
```

Stringent constraints to NP contributions

Exclusive results have very large theoretical uncertainties, (measure $|C_7^{(eff)}|^2 + |C_7^{(eff)}|^2$) Measurements powerless due to form factors that add large uncertainties

BR ($B^0 \rightarrow K^{*0} \gamma$) = (43±14) 10⁻⁶ (theo) $BR (B^0 \rightarrow K^{*0} \gamma) = (43.3 \pm 1.5) 10^{-6} (exp)$ HFAG

Challenge to the theorists!

```
Recently discovered also the
radiative decays of B
BR (B_s \rightarrow \phi \gamma) = (57^{+18} + 12^{+12}) 10^{-6}
  Belle'08
BR (B_s \rightarrow \phi \gamma) = (43 \pm 14)
                                       10-6
   (theo)
```


Theoretical Introduction

The Q7 operator, main responsible for $b \rightarrow s\gamma$ processes, produces mostly leftly-polarized photons in the SM

 $C_{\tau}^{(eff)}/C_{\tau}^{(eff)} \sim 0.04$ (more or less ~ $A_{R}/A_{L} \sim m_{s}/m_{b}$)

Mixing CP-asymmetries

almost vanish

- $B \rightarrow f^{CP} \gamma$ is (usually) not a CP eigenstate!

We can consider anyway the «wrongly» polarized photons:

$$\Gamma(\mathsf{B}_{q}(\bar{\mathsf{B}}_{q}) \to f^{CP}\gamma) \propto e^{-\Gamma_{q}t} \left(\cosh \frac{\Delta\Gamma_{q}t}{2} - \mathcal{A}^{\Delta} \sinh \frac{\Delta\Gamma_{q}t}{2} \pm \right.$$
F.Muheim, Y.Xie, and R.Zwicky,
Phys.Lett.B664:174-179,2008 $\pm \mathcal{C} \cos \Delta m_{q}t \mp \mathcal{S} \sin \Delta m_{q}t \right)$

Phys.Lett.B664:174-179,2008

 $\tan \psi = |A_L/A_R|$ $A^{\Delta} = \sin 2\psi \cos \phi$ \mathbf{B}^0 : $\Delta \Gamma \approx \mathbf{0}$

No sensitivity to A^A

 $\phi = 2\beta - \phi^{\text{peng}} \approx 2\beta$

 $\sin 2\psi = S / \sin 2\beta$

B_i: $\Delta \Gamma_i / \Gamma_i \sim O(10\%)$ Sensitive to A^Δ $\phi = 2\beta_{s} - \phi^{\text{peng}} \approx 0$ S = 0, double smallness $\sin 2\psi = A^{\Delta} \sim 2C_{\gamma}'^{(eff)}/C_{\gamma}^{(eff)}$

- Marseille

CPPM

Validation and Reach

Calibration now based on low mass resonances

High energy calibration will first come when $B_d \rightarrow K^{*0} \gamma$ available.

Lifetime calibration

- Measurement sensitive to bias in lifetime.
- Need to know acceptance very well
- Validation started with prompt $\phi \rightarrow K^+K^-$ events

20

Conclusions

First B decays have been recorded
(though we're more interested in the "last ones")

LHCb is well on track for its heavy flavour program:

First validation work with 2010 data is very promising Trigger, particle identification and tracking efficiencies are reasonably close to expectations

Excellent Performance for Rare Decays!

Exciting prospects already with 100 pb^{-1}

 $B_s \rightarrow \mu^+ \mu^-$: improve Tevatron's limits

 $B \rightarrow K^* \mu^+ \mu^-$: yield comparable to B factories

 $B_{q} \rightarrow \phi \gamma$: ~10 times the current world sample

Marseille

CPPM

Conclusions

Questions?

BACKUP – Bsmumu

- Marseille

CPPM

BACKUP – Bsmumu

BACKUP-bsmumu

CPPM - Marseille

Giampiero Mancinelli,

The One Page of Rare Charm

Highly suppressed decay in the SM:

```
BR ( D^0 \rightarrow \mu^+ \mu^- ) ~ 3 . 10<sup>-13</sup>
```

Can be enhanced in MSSM with R-parity violation up to 10^{-6}

```
Current best experimental limit by Belle
BR(D^0 \rightarrow \mu^+ \mu^-) < 1.4 10<sup>-7</sup> @ 90%CL (arXiv:1005.5445)
```

```
Analysis overview :
   Use D^* \rightarrow D^0 \pi
   Multivariate analysis based on impact parameter, pT, difference
      in \phi and \eta between the D^0 and soft \pi
    Normalization to D^0 \rightarrow \Pi \Pi
    Similar to B_{a} \rightarrow \mu \mu but more difficult
        lower invariant mass
       higher background
LHCb prospects: expected limit for 100 pb<sup>-1</sup>
```

 $BR(D^0 \rightarrow \mu^+\mu^-) < 4.10^{-8} @ 90\% CL$

Marseill