

ALPHA $_{\mathrm{s}}$ from Lattice QCD

by
J. Rodríguez-Quintero
Dpto. Fisica Aplicada, Fac. CCEE Universidad de Huelva, Spain

In collaboration with many other people: B. Blossier, Ph. Boucaud, F. De Soto, M. Gravina, A. Le Yaouanc, J.P. Leroy, J. Micheli, V. Morenas, O. Pène

ICHEP 2010; July 22,28; Paris 20010.

Lattice QCD and

Dpto. Fisica Aplicada, Fac. CCEE Universidad de Huelva, Spain

In collaboration with many other people: B. Blossier, Ph. Boucaud, F. De Soto, M. Gravina, A. Le Yaouanc, J.P. Leroy, J. Micheli; V. Morenas, O. Pène ICHEP 2010; July 22,28; Paris 20010.

QCD: The running of ALPHA $_{s}$

QCD: The running of ALPHA $_{s}$

QCD: The running of ALPHA $_{s}$

ALPHA $_{s}$ from Lattice QCD: the many raiders...

Very recent $N_{f}=2+1 \& N_{f}=4$ computations:

ALPHA $_{s}$ from Lattice QCD: the many raiders...

Very recent $N_{f}=2+1 \& N_{f}=4$ computations:

C.T.H. Davies et al.; Phys. Rev. D78(2008)114507

ALPHA $_{s}$ from Lattice QCD: the many raiders...

Very recent $N_{f}=2+1 \& N_{f}=4$ computations:

C.T.H. Davies et al.;
 Phys. Rev. D78(2008)114507

$$
W_{m n} \equiv \frac{1}{3}\langle 0| \operatorname{Re} \operatorname{Tr} \mathrm{Pe}^{-i g \oint_{n m} A \cdot d x}|0\rangle,
$$

$$
q^{2} \frac{d \alpha_{V}(q)}{d q^{2}}=-\beta_{0} \alpha_{V}^{2}-\beta_{1} \alpha_{V}^{3}-\beta_{2} \alpha_{V}^{4}-\beta_{3} \alpha_{V}^{5}
$$

$$
Y=\sum_{n=1}^{\infty} c_{n} \alpha_{V}^{n}(d / a)
$$

$$
\alpha_{0} \equiv \alpha_{V}\left(7.5 \mathrm{GeV}, n_{f}=3\right) \longrightarrow \alpha_{\overline{\mathrm{MS}}}\left(M_{Z}, n_{f}=5\right)
$$

ALPHA $_{s}$ from Lattice QCD: the many raiders...

Very recent $N_{f}=2+1 \& N_{f}=4$ computations:

ALPHA $_{\mathrm{s}}$ from Lattice QCD: the many raiders...

Very recent $N_{f}=2+1 \& N_{f}=4$ computations:
I. Allison et al.;

Phys. Rev. D78(2008)054513

$$
G(t) \equiv a^{6} \sum_{\mathbf{x}}\left(a m_{0 c}\right)^{2}\langle 0| j_{5}(\mathbf{x}, t) j_{5}(0,0)|0\rangle
$$

$R_{n} \equiv \begin{cases}G_{4} / G_{4}^{(0)} & \text { for } n=4, \\ \frac{a m_{\eta_{e}}}{2 a m_{\text {pole }, c}^{(0)}}\left(G_{n} / G_{n}^{(0)}\right)^{1 /(n-4)} & \text { for } n \geq 6,\end{cases}$

ALPHA $_{s}$ from Lattice QCD: the many raiders...

Very recent $N_{f}=2+1 \& N_{f}=4$ computations:

> S. Aoki et al.; JHEP10(2009)053

ALPHA $_{s}$ from Lattice QCD: the many raiders...

Very recent $N_{f}=2+1 \& N_{f}=4$ computations:
S. Aoki et al.; JHEP10(2009)053

$$
S_{g}=\frac{\beta}{N} \sum_{C \in S_{0}} W_{0}\left(C, g_{0}^{2}\right) \operatorname{Re} \operatorname{tr}(1-P(C))+\frac{\beta}{N} \sum_{C \in S_{1}} W_{1}\left(C, g_{0}^{2}\right) \operatorname{Re} \operatorname{tr}(1-R(C))
$$

$$
\begin{aligned}
& S_{f}[U, \psi, \bar{\psi}]=a^{4} \sum_{x} \bar{\psi}\left(D_{W}+m_{0}\right) \psi \\
& D_{W}=\frac{1}{2}\left(\gamma_{\mu}\left(\nabla_{\mu}+\nabla_{\mu}^{*}\right)-a \nabla_{\mu}^{*} \nabla_{\mu}\right)-c_{\mathrm{SW}} \frac{1}{4} \sigma_{\mu \nu} P_{\mu \nu}
\end{aligned}
$$

- Iwasaki action for the gauge fields -Wilson Clover for the fermions

ALPHA $_{s}$ from Lattice QCD: the many raiders...

Very recent $N_{f}=2+1 \& N_{f}=4$ computations:

S. Aoki et al.; JHEP10(2009)053

$$
\Lambda_{\mathrm{SF}}=\frac{1}{L}\left(b_{0} \bar{g}(L)\right)^{-\frac{b_{1}}{2 b_{0}^{2}}} \exp \left(-\frac{1}{2 b_{0} \bar{g}(L)}\right) \exp \left(-\int_{0}^{\bar{g}(L)} d g\left(\frac{1}{\beta(g)}+\frac{1}{b_{0} g^{3}}-\frac{b_{1}}{b_{0}^{2} g}\right)\right)
$$

ALPHA from Lattice QCD: the many raiders...

Very recent $N_{f}=2+1 \& N_{f}=4$ computations:

ALPHA $_{s}$ from Lattice QCD: the many raiders...

Very recent $N_{f}=2+1 \& N_{f}=4$ computations:

$$
\Sigma\left(u, \frac{a}{L}\right)=\left.\bar{g}^{2}(2 L)\right|_{u=\bar{g}^{2}(L)} . \quad \sigma(u)=\lim _{a / L \rightarrow 0} \Sigma\left(u, \frac{a}{L}\right)
$$

ALPHA $_{\mathrm{s}}$ from Lattice QCD: the many raiders...

Very recent $N_{f}=2+1 \& N_{f}=4$ computations:

$$
\Sigma\left(u, \frac{a}{L}\right)=\left.\bar{g}^{2}(2 L)\right|_{u=\bar{g}^{2}(L)} . \quad \sigma(u)=\lim _{a / L \rightarrow 0} \Sigma\left(u, \frac{a}{L}\right),
$$

ALPHA $_{\mathrm{s}}$ from Lattice QCD: the many raiders...

Very recent $N_{f}=2+1 \& N_{f}=4$ computations:

$$
\Sigma\left(u, \frac{a}{L}\right)=\left.\bar{g}^{2}(2 L)\right|_{u=\bar{g}^{2}(L)} . \quad \sigma(u)=\lim _{a / L \rightarrow 0} \Sigma\left(u, \frac{a}{L}\right),
$$

ALPHA $_{s}$ from Lattice QCD: the many raiders...

Very recent $N_{f}=2+1 \& N_{f}=4$ computations:

ALPHA $_{s}$ from Lattice QCD: the many raiders...

Very recent $N_{f}=2+1 \& N_{f}=4$ computations:

- Overlap fermions
$\left\langle J_{\mu}^{a} J_{\nu}^{b}\right\rangle(Q)=\delta^{a b}\left[\left(\delta_{\mu \nu} Q^{2}-Q_{\mu} Q_{\nu}\right) \Pi_{J}^{(1)}(Q)-Q_{\mu} Q_{\nu} \Pi_{J}^{(0)}(Q)\right]$.
$\left.\Pi_{V+A}\right|_{\mathrm{OPE}}\left(Q^{2}, \alpha_{s}\right)=c+C_{0}\left(Q^{2}, \mu^{2}, \alpha_{s}\right)$
$+C_{m}^{V+A}\left(Q^{2}, \mu^{2}, \alpha_{s}\right) \frac{\bar{m}^{2}(Q)}{Q^{2}}$
$+\sum_{q=u, d, s} C_{\bar{q} q}^{V+A}\left(Q^{2}, \alpha_{s}\right) \frac{\langle m \bar{q} q\rangle}{Q^{4}}$
$+C_{G G}\left(Q^{2}, \alpha_{s}\right) \frac{\left\langle\left(\alpha_{s} / \pi\right) G G\right\rangle}{Q^{4}}+\mathcal{O}\left(Q^{-6}\right)$.

ALPHA $_{s}$ from Lattice QCD: the many raiders...

Very recent $N_{f}=2+1 \& N_{f}=4$ computations:

ALPHA from Lattice QCD: The ghost-gluon coupling

The ghost-gluon vertex:

$$
\widetilde{\Gamma}_{\nu}^{a b c}(-q, k ; q-k)=\underset{\mathrm{k}}{-\rightarrow-\mathrm{q}_{\mathrm{q}}=i g_{0} f^{a b c}\left(q_{\nu} H_{1}(q, k)+(q-k)_{\nu} H_{2}(q, k)\right), \text { q-k }}
$$

$$
\tilde{\Gamma}_{R}=\widetilde{Z}_{1} \Gamma
$$

ALPHA $_{\text {s }}$ from Lattice QCD: The ghost-gluon coupling

The ghost-gluon vertex:

$$
\begin{aligned}
& \tilde{\Gamma}_{\nu}^{a b c}(-q, k ; q-k)=\underset{\mathrm{k}}{\rightarrow} \rightarrow \tilde{\mathrm{~T}}^{\mathrm{q}-\mathrm{k}}=(8)^{a b c}\left(q_{\nu} H_{1}(q, k)+(q-k)_{\nu} H_{2}(q, k)\right) \\
& \text { The strong coupling: } \\
& g_{R}\left(\mu^{2}\right)=\lim _{\Lambda \rightarrow \infty} Z_{g}^{-1}\left(\mu^{2}, \Lambda^{2} g_{0}\left(\Lambda^{2}\right)\right.
\end{aligned}
$$

ALPHA from Lattice QCD: The ghost-gluon coupling

The ghost-gluon vertex:

$$
\begin{aligned}
& \text { The strong coupling: } \\
& g_{R}\left(\mu^{2}\right)=\lim _{\Lambda \rightarrow \infty} Z_{g}^{-1}\left(\mu^{2}, \Lambda^{2} g_{0}\left(\Lambda^{2}\right)=\lim _{\Lambda \rightarrow \infty} \frac{Z_{3}^{1 / 2}\left(\mu^{2}, \Lambda^{2}\right) \widetilde{Z}_{3}\left(\mu^{2}, \Lambda^{2}\right)}{\widetilde{Z}_{1}\left(\mu^{2}, \Lambda^{2}\right)} g_{0}\left(\Lambda^{2}\right)\right.
\end{aligned}
$$

ALPHA from Lattice QCD: The ghost-gluon coupling

The ghost-gluon vertex:

$$
\begin{aligned}
& \text { The strong coupling: } \\
& g_{R}\left(\mu^{2}\right)=\lim _{\Lambda \rightarrow \infty} Z_{g}^{-1}\left(\mu^{2}, \Lambda^{2} g_{0}\left(\Lambda^{2}\right)=\lim _{\Lambda \rightarrow \infty} \frac{Z_{3}^{1 / 2}\left(\mu^{2}, \Lambda^{2}\right) \widetilde{Z}_{3}\left(\mu^{2}, \Lambda^{2}\right)}{\widetilde{Z}_{1}\left(\mu^{2}, \Lambda^{2}\right)} g_{0}\left(\Lambda^{2}\right)\right.
\end{aligned}
$$

In Taylor scheme

ALPHA $_{\text {s }}$ from Lattice QCD: The ghost-gluon coupling

The ghost-gluon vertex:

$$
\begin{aligned}
& \tilde{\Gamma}_{\nu}^{a b c}(-q, k ; q-k)=\underset{\mathrm{k}=0}{ } \tilde{\Gamma}_{R}=\tilde{Z}_{1} \Gamma \\
& \text { The strong coupling: } \\
& g_{R}\left(\mu^{2}\right)=\lim _{\Lambda \rightarrow \infty} Z_{g}^{-1}\left(\mu^{2}, \Lambda^{2} g_{0}\left(\Lambda^{2}\right)=\lim _{\Lambda \rightarrow \infty} \frac{Z_{3}^{1 / 2}\left(\mu^{2}, \Lambda^{2}\right) \tilde{Z}_{3}\left(\mu^{2}, \Lambda^{2}\right)}{Z_{1}\left(\mu^{2}, \Lambda^{2}\right)} g_{0}\left(\Lambda^{2}\right)\right. \\
& 1
\end{aligned}
$$

In Taylor scheme \&

ALPHA from Lattice QCD:

The ghost-gluon coupling

The ghost-gluon vertex:

$$
\widetilde{\Gamma}_{\nu}^{a b c}(-q, k ; q-k)=\underset{\mathrm{k}=0}{\rightarrow} \underset{\mathrm{q}}{\rightarrow-\mathrm{Bc} f^{a b c}\left(q_{\nu} H_{1}(q, k)+(q-k)_{\nu} H_{2}(q, k)\right)} \begin{gathered}
\tilde{\Gamma}_{R}=\widetilde{Z}_{1} \Gamma
\end{gathered}
$$

The strong coupling:

In Taylor scheme \&

$$
\alpha_{T}\left(\mu^{2}\right) \equiv \frac{g_{T}^{2}\left(\mu^{2}\right)}{4 \pi}=\lim _{\Lambda \rightarrow \infty} \frac{g_{0}^{2}\left(\Lambda^{2}\right)}{4 \pi} Z_{3}\left(\mu^{2}, \Lambda^{2}\right) \widetilde{Z}_{3}^{2}\left(\mu^{2}, \Lambda^{2}\right)
$$

ALPHA $_{\text {s }}$ from Lattice QCD: The ghost-gluon coupling

Lattice: $\frac{1}{L^{2}} \ll p^{2} \ll \frac{1}{a^{2}}$

Propagators in Landau gauge

$$
\begin{array}{r}
\langle O\rangle=\frac{1}{Z} \int \mathcal{D}[U] \mathscr{D}[\Phi] O e^{-S[U, \Phi]} \\
A_{\mu}\left(x+\frac{\hat{\mu}}{2}\right)=\frac{1}{2 i a_{0} 0}\left(U_{\mu}(x)-U_{\mu}^{\dagger}(x)\right)
\end{array}
$$

- In Landau gauge: $\left[\right.$ minimizing $\left.\quad F_{U}[g]=\operatorname{Re} \sum_{x} \sum_{\mu}\left(1-\frac{1}{\mathrm{~N}} \mathrm{~g}(\mathrm{x}) \mathrm{U}_{\mu}(\mathrm{x}) \mathrm{g}^{\dagger}(\mathrm{x}+\hat{\mu})\right)\right]$

$$
D_{\mu v}^{a b}(k)=\int d^{4} x d^{4} y e^{i k \cdot(x-y)}\left\langle A_{\mu}^{a}(x) A_{v}^{b}(y)\right\rangle_{U}=\frac{G\left(k^{2}\right)}{k^{2}} \delta^{a b} \delta_{\mu v}^{T}(k)
$$

- In MOM renormalization scheme:

ALPHA $_{\text {s }}$ from Lattice QCD: The ghost-gluon coupling

Lattice: $\frac{1}{L^{2}} \ll p^{2} \ll \frac{1}{a^{2}}$

Propagators in Landau gauge

$$
\begin{array}{r}
\langle O\rangle=\frac{1}{Z} \int \mathcal{D}[U] \mathcal{D}[\Phi] O e^{-S[U, \Phi]} \\
A_{\mu}\left(x+\frac{\hat{\mu}}{2}\right)=\frac{1}{2 i a_{0}}\left(U_{\mu}(x)-U_{\mu}^{\dagger}(x)\right)
\end{array}
$$

- In Landau gauge: $\left[\right.$ minimizing $\left.\quad F_{U}[g]=\operatorname{Re} \sum_{x} \sum_{\mu}\left(1-\frac{1}{\mathrm{~N}} \mathrm{~g}(\mathrm{x}) \mathrm{U}_{\mu}(\mathrm{x}) \mathrm{g}^{\hat{\dagger}}(\mathrm{x}+\hat{\mu})\right)\right]$

$$
G^{a b}(k)=\int d^{4} x d^{4} y e^{i k \cdot(x-y)}\left(M^{-1}\right)_{x y}^{a b}=-\frac{F\left(k^{2}\right)}{k^{2}} \delta^{a b}
$$

- In MOM renormalization scheme:

ALPHA from Lattice QCD: The ghost-gluon coupling

Lattice: $\frac{1}{L^{2}} \ll p^{2} \ll \frac{1}{a^{2}}$

Propagators in Landau gauge

$$
\begin{aligned}
& \left(G^{(2)}\right)_{\mu \nu}^{a b}\left(p^{2}, \Lambda\right)=\frac{G\left(p^{2}, \Lambda\right)}{p^{2}} \delta_{a b}\left(\delta_{\mu \nu}-\frac{p_{\mu} p_{\nu}}{p^{2}}\right) \\
& \left(F^{(2)}\right)^{a, b}\left(p^{2}, \Lambda\right)=-\delta_{a b} \frac{F\left(p^{2}, \Lambda\right)}{p^{2}}
\end{aligned}
$$

Renormalized in non-perturbative MOM-scheme:

$$
\begin{aligned}
& G_{R}\left(p^{2}, \mu^{2}\right)=\lim _{\Lambda \rightarrow \infty} Z_{3}^{-1}\left(\mu^{2}, \Lambda\right) G\left(p^{2}, \Lambda\right) \\
& F_{R}\left(p^{2}, \mu^{2}\right)=\lim _{\Lambda \rightarrow \infty} \widetilde{Z}_{3}^{-1}\left(\mu^{2}, \Lambda\right) F\left(p^{2}, \Lambda\right)
\end{aligned}
$$

$$
G_{R}\left(\mu^{2}, \mu^{2}\right)=F_{R}\left(\mu^{2}, \mu^{2}\right)=1
$$

ALPHA $_{s}$ from Lattice QCD: Matching Lattice and PTh

4-loops perturbation theory ${ }^{3}: p \gg \Lambda_{\ell C D}$

$$
\begin{aligned}
\alpha_{T}\left(\mu^{2}\right) & =\frac{4 \pi}{\beta_{0} t}\left(1-\frac{\beta_{1}}{\beta_{0}^{2}} \frac{\log (t)}{t}+\frac{\beta_{1}^{2}}{\beta_{0}^{4}} \frac{1}{t^{2}}\left(\left(\log (t)-\frac{1}{2}\right)^{2}+\frac{\widetilde{\beta}_{2} \beta_{0}}{\beta_{1}^{2}}-\frac{5}{4}\right)\right) \\
& +\frac{1}{\left(\beta_{0} t\right)^{4}}\left(\frac{\widetilde{\beta}_{3}}{2 \beta_{0}}+\frac{1}{2}\left(\frac{\beta_{1}}{\beta_{0}}\right)^{3}\left(-2 \log ^{3}(t)+5 \log ^{2}(t)+\left(4-6 \frac{\widetilde{\beta}_{2} \beta_{0}}{\beta_{1}^{2}}\right) \log (t)-1\right)\right), t=\ln \frac{\mu^{2}}{\Lambda_{T}^{2}}
\end{aligned}
$$

$$
\beta_{T}\left(\alpha_{T}\right)=\frac{d \alpha_{T}}{d \ln \mu^{2}}=-4 \pi \sum_{i=0} \widetilde{\beta}_{i}\left(\frac{\alpha_{T}}{4 \pi}\right)^{i+2}, \frac{\Lambda_{\overline{\mathrm{MS}}}}{\Lambda_{T}}=e^{-\frac{c_{1}}{2 \beta_{0}}}=e^{-\frac{507-40 N_{f}}{792-48 N_{f}}}=0.541449
$$

ALPHA $_{s}$ from Lattice QCD:
 Matching Lattice and PTh
 4-loops perturbation theory ${ }^{3}: p \gg \Lambda_{Q C D}$

$$
\begin{aligned}
\alpha_{T}\left(\mu^{2}\right) & =\frac{4 \pi}{\beta_{0} t}\left(1-\frac{\beta_{1}}{\beta_{0}^{2}} \frac{\log (t)}{t}+\frac{\beta_{1}^{2}}{\beta_{0}^{4}} \frac{1}{t^{2}}\left(\left(\log (t)-\frac{1}{2}\right)^{2}+\frac{\widetilde{\beta}_{2} \beta_{0}}{\beta_{1}^{2}}-\frac{5}{4}\right)\right) \\
& +\frac{1}{\left(\beta_{0} t\right)^{4}}\left(\frac{\widetilde{\beta}_{3}}{2 \beta_{0}}+\frac{1}{2}\left(\frac{\beta_{1}}{\beta_{0}}\right)^{3}\left(-2 \log ^{3}(t)+5 \log ^{2}(t)+\left(4-6 \frac{\widetilde{\beta}_{2} \beta_{0}}{\beta_{1}^{2}}\right) \log (t)-1\right)\right), t=\ln \frac{\mu^{2}}{\Lambda_{T}^{2}}
\end{aligned}
$$

$$
\beta_{T}\left(\alpha_{T}\right)=\frac{d \alpha_{T}}{d \ln \mu^{2}}=-4 \pi \sum_{i=1}^{\widetilde{\beta}_{i}}\left(\frac{\alpha_{T}}{4 \pi}\right)^{i+2}, \frac{\Lambda_{\overline{\mathrm{MS}}}}{\Lambda_{T}}=e^{-\frac{c_{1}}{2 \beta_{0}}}=e^{-\frac{507-40 N_{f}}{792-48 N_{f}}}=0.541449
$$

[^0]
ALPHA from Lattice QCD:

Matching Lattice and PTh

4-loops perturbation theory ${ }^{3}: p \gg \Lambda_{\ell C D}$

ALPHA from Lattice QCD: Matching Lattice and PTh

4-loops perturbation theory ${ }^{3}: p \gg \Lambda_{Q C D}$

ALPHA from Lattice QCD: Matching Lattice and PTh

OPE power corrections

$$
\begin{aligned}
& \left(F^{(2)}\right)^{a b}\left(q^{2}\right)=\left(F_{\text {pert }}^{(2)}\right)^{a b}\left(q^{2}\right)+w^{a b} \frac{\left\langle A^{2}\right\rangle}{4\left(N_{C}^{2}-1\right)}+\ldots, w^{a b}=2 \times \\
& \left(G^{(2)}\right)_{\mu \nu}^{a b}\left(q^{2}\right)=\left(G_{\text {pert }}^{(2)}\right)_{\mu \nu}^{a b}\left(q^{2}\right)+w_{\mu \nu}^{a b} \frac{\left\langle A^{2}\right\rangle}{4\left(N_{C}^{2}-1\right)}+\ldots, w_{\mu \nu}^{a b}=\text { eledee }+2 \times \text { eeceelee } \\
& F_{R}\left(q^{2}, \mu^{2}\right)=F_{R, \text { pert }}\left(q^{2}, \mu^{2}\right)\left(1+\frac{3}{q^{2}} \frac{g_{R}^{2}\left\langle A^{2}\right\rangle_{R, \mu^{2}}}{4\left(N_{C}^{2}-1\right)}\right), G_{R}\left(q^{2}, \mu^{2}\right)=G_{R, \text { pert }}\left(q^{2}, \mu^{2}\right)\left(1+\frac{3}{q^{2}} \frac{\left.g_{R}^{2}\left\langle A^{2}\right\rangle_{R, \mu^{2}}^{4\left(N_{C}^{2}-1\right)}\right)}{}\right.
\end{aligned}
$$

ALPHA $_{s}$ from Lattice QCD: Matching Lattice and PTh

OPE power corrections

$$
\begin{aligned}
& \left(F^{(2)}\right)^{a b}\left(q^{2}\right)=\left(F_{\text {pert }}^{(2)}\right)^{a b}\left(q^{2}\right)+w^{a b} \frac{\left\langle A^{2}\right\rangle}{4\left(N_{C}^{2}-1\right)}+\ldots, w^{a b}=2 \times \\
& \left(G^{(2)}\right)_{\mu \nu}^{a b}\left(q^{2}\right)=\left(G_{\mathrm{pert}}^{(2)}\right)_{\mu \nu}^{a b}\left(q^{2}\right)+w_{\mu \nu}^{a b} \frac{\left\langle A^{2}\right\rangle}{4\left(N_{C}^{2}-1\right)}+\ldots, w_{\mu \nu}^{a b}=\text { ecesee }+2 \times \text { eqeecele } \\
& F_{R}\left(q^{2}, \mu^{2}\right)=F_{R, \text { pert }}\left(q^{2}, \mu^{2}\right)\left(1+\frac{3}{q^{2}} \frac{g_{R}^{2}\left\langle A^{2}\right\rangle_{R, \mu^{2}}}{4\left(N_{C}^{2}-1\right)}\right), G_{R}\left(q^{2}, \mu^{2}\right)=G_{R, \text { pert }}\left(q^{2}, \mu^{2}\right)\left(1+\frac{3}{q^{2}} \frac{g_{R}^{2}\left\langle A^{2}\right\rangle_{R, \mu^{2}}}{4\left(N_{C}^{2}-1\right)}\right)
\end{aligned}
$$

Leading logarithm ${ }^{4}: \alpha_{T}\left(\mu^{2}\right)=\alpha_{T}^{\text {pert }}\left(\mu^{2}\right)\left(1+\frac{9}{\mu^{2}}\left(\frac{\alpha_{T}^{\text {pert }}\left(\mu^{2}\right)}{\alpha_{T}^{\text {pert }}\left(q_{0}^{2}\right)}\right)^{1-\gamma_{0}^{A^{2}} / \beta_{0}} \frac{g_{T}^{2}\left(q_{0}^{2}\right)\left\langle A^{2}\right\rangle_{R, q_{0}^{2}}}{4\left(N_{C}^{2}-1\right)}\right)$ $1-\gamma_{0}^{A^{2}} / \beta_{0}=1-\frac{105-8 N_{f}}{132-8 N_{f}}=\frac{9}{44-\frac{8}{3} N_{f}}$

ALPHA $_{s}$ from Lattice QCD: Matching Lattice and PTh

OPE power corrections

$$
\begin{aligned}
& \left(G^{(2)}\right)_{\mu \nu}^{a b}\left(q^{2}\right)=\left(G_{\mathrm{pert}}^{(2)}\right)_{\mu \nu}^{a b}\left(q^{2}\right)+w_{\mu \nu}^{a b} \frac{\left\langle A^{2}\right\rangle}{4\left(N_{C}^{2}-1\right)}+\ldots, w_{\mu \nu}^{a b}=\text { eceqee }+2 \times \text { eqeecelee } \\
& F_{R}\left(q^{2}, \mu^{2}\right)=F_{R, \text { pert }}\left(q^{2}, \mu^{2}\right)\left(1+\frac{3}{q^{2}} \frac{g_{R}^{2}\left\langle A^{2}\right\rangle_{R, \mu^{2}}}{4\left(N_{C}^{2}-1\right)}\right), G_{R}\left(q^{2}, \mu^{2}\right)=G_{R, \text { pert }}\left(q^{2}, \mu^{2}\right)\left(1+\frac{3}{q^{2}} \frac{g_{R}^{2}\left\langle A^{2}\right\rangle_{R, \mu^{2}}}{4\left(N_{C}^{2}-1\right)}\right) \\
& \text { Leading logarithm }{ }^{4}: \alpha_{T}\left(\mu^{2}\right)=\alpha_{T}^{\text {pert }}\left(\mu^{2}\right)\left(1+\frac{9}{\mu^{2}}\left(\frac{\alpha_{T}^{\text {pert }}\left(\mu^{2}\right)}{\alpha_{T}^{\text {pert }}\left(q_{0}^{2}\right)}\right)^{1-\gamma_{0}^{A^{2}} / \beta_{0}} \frac{g_{T}^{2}\left(q_{0}^{2}\right)\left\langle A^{2}\right\rangle_{R, q_{0}^{2}}}{4\left(N_{C}^{2}-1\right)}\right. \\
& 1-\gamma_{0}^{1^{2}} / \beta_{0}=1-\frac{105-8 N_{f}}{132-8 N_{f}}=\frac{9}{44-\frac{8}{3} N_{f}}
\end{aligned}
$$

ALPHA $_{s}$ from Lattice QCD: Matching Lattice and PTh

OPE power corrections

$$
\begin{aligned}
& \left(F^{(2)}\right)^{a b}\left(q^{2}\right)=\left(F_{\text {pert }}^{(2)}\right)^{a b}\left(q^{2}\right)+w^{a b} \frac{\left\langle A^{2}\right\rangle}{4\left(N_{C}^{2}-1\right)}+\ldots, w^{a b}=2 \times \\
& \left(G^{(2)}\right)_{\mu \nu}^{a b}\left(q^{2}\right)=\left(G_{\mathrm{pert}}^{(2)}\right)_{\mu \nu}^{a b}\left(q^{2}\right)+w_{\mu \nu}^{a b} \frac{\left\langle A^{2}\right\rangle}{4\left(N_{C}^{2}-1\right)}+\ldots, w_{\mu \nu}^{a b}=\text { ecesee }+2 \times \text { eqeecele } \\
& F_{R}\left(q^{2}, \mu^{2}\right)=F_{R, \text { pert }}\left(q^{2}, \mu^{2}\right)\left(1+\frac{3}{q^{2}} \frac{g_{R}^{2}\left\langle A^{2}\right\rangle_{R, \mu^{2}}}{4\left(N_{C}^{2}-1\right)}\right), G_{R}\left(q^{2}, \mu^{2}\right)=G_{R, \text { pert }}\left(q^{2}, \mu^{2}\right)\left(1+\frac{3}{q^{2}} \frac{g_{R}^{2}\left\langle A^{2}\right\rangle_{R, \mu^{2}}}{4\left(N_{C}^{2}-1\right)}\right)
\end{aligned}
$$

Leading logarithm ${ }^{4}: \alpha_{T}\left(\mu^{2}\right)=\alpha_{T}^{\text {pert }}\left(\mu^{2}\right)\left(1+\frac{9}{\mu^{2}}\left(\frac{\alpha_{T}^{\text {pert }}\left(\mu^{2}\right)}{\alpha_{T}^{\text {pert }}\left(q_{0}^{2}\right)}\right)^{1-\gamma_{0}^{A^{2}} / \beta_{0}} \frac{g_{T}^{2}\left(q_{0}^{2}\right)\left\langle A^{2}\right\rangle_{R, q_{0}^{2}}}{4\left(N_{C}^{2}-1\right)}\right)$
$1-\gamma_{0}^{A^{2}} / \beta_{0}=1-\frac{105-8 N_{f}}{132-8 N_{f}}=\frac{9}{44-\frac{8}{3} N_{f}}$
Chetyrking \& Maier, arXiv:0911.0594 At the three-loop level !!!

ALPHA $_{s}$ from Lattice QCD: Matching Lattice and PTh

OPE power corrections

ALPHA from Lattice QCD: $\mathrm{N}_{\mathrm{f}}=2$ twisted-mass QCD

European Twisted Mass Collaboration

Fermions: twisted-mass action

$$
S_{\mathrm{tm}}^{\mathrm{F}}=a^{4} \sum_{x}\left\{\bar{\chi}_{x}\left[D_{\mathrm{W}}+m_{0}+i \gamma_{5} \tau_{3} \mu_{q}\right] \chi_{x}\right\}
$$

Gauge fields: tlSym action
$S_{g}=\frac{\beta}{3} \sum_{x}\left(b_{0} \sum_{\substack{\mu, \nu=1 \\ 1 \leq \mu<\nu}}^{4}\left\{1-\mathbb{R e} \operatorname{Tr}\left(U_{x, \mu, \nu}^{1 \times 1}\right)\right\}+b_{1} \sum_{\substack{\mu, \nu=1 \\ \mu \neq \nu}}^{4}\left\{1-\mathbb{R e} \operatorname{Tr}\left(U_{x, \mu, \nu}^{1 \times 2}\right)\right\}\right), \beta \equiv 6 / g_{0}^{2}$

$$
\left(b_{0}=1-8 b_{1}, b_{1}=-1 / 12\right)+\text { Maximal twist : } \quad \underline{\mathcal{O}\left(a^{2}\right)}
$$

$$
\begin{aligned}
V=24^{3} \times 48 \beta & =3.9 \quad \mu=0.004,0.0064,0.010 \\
V=32^{3} \times 64 \beta & =4.05 \quad \mu=0.003,0.006,0.008,0.012 \\
\beta & =4.2 \quad \mu=0.0065
\end{aligned}
$$

Artefacts: $\quad \underline{\mathcal{O}\left(a^{2} \Lambda_{Q C D}^{2}\right), \quad \underline{\mathcal{O}\left(a^{2} p^{2}\right)}, \quad \underline{\mathcal{O}\left(a^{2} \mu^{2}\right)} . ~}$

ALPHA $_{s}$ from Lattice QCD: $\mathrm{N}_{\mathrm{f}}=2$ twisted-mass QCD

Ghost and gluon on the lattice

Landau gauge

$$
F_{U}[g]=\operatorname{Re}\left[\sum_{x} \sum_{\mu} \operatorname{Tr}\left(1-\frac{1}{N} g(x) U_{\mu}(x) g^{\dagger}(x+\mu)\right)\right]
$$

Gluon:

$$
\begin{gathered}
A_{\mu}(x+\hat{\mu} / 2)=\frac{U_{\mu}(x)-U_{\mu}^{\dagger}(x)}{2 i a g_{0}}-\frac{1}{3} \operatorname{Tr}\left(\frac{U_{\mu}(x)-U_{\mu}^{\dagger}(x)}{2 i a g_{0}}\right) \\
\text { eneeee }\left(G^{(2)}\right)_{\mu_{1} \mu_{2}}^{a_{1} a_{2}}(p)=\left\langle A_{\mu_{1}}^{a_{1}}(p) A_{\mu_{2}}^{a_{2}}(-p)\right\rangle
\end{gathered}
$$

ALPHA $_{s}$ from Lattice QCD: $\mathrm{N}_{\mathrm{f}}=2$ twisted-mass QCD

Ghost and gluon on the lattice

Landau gauge

$$
F_{U}[g]=\operatorname{Re}\left[\sum_{x} \sum_{\mu} \operatorname{Tr}\left(1-\frac{1}{N} g(x) U_{\mu}(x) g^{\dagger}(x+\mu)\right)\right]
$$

Ghost:

$$
\begin{gathered}
\left.\cdots \cdots \cdots \cdots{ }^{(2)}\right)^{a b}(x-y) \equiv\left\langle\left(M^{-1}\right)_{x y}^{a b}\right\rangle, M(U)=-\frac{1}{N} \nabla \cdot \widetilde{D}(U) \\
\widetilde{D}(U) \eta(x)=\frac{1}{2}\left(U_{\mu}(x) \eta(x+\mu)-\eta(x) U_{\mu}(x)+\eta(x+\mu) U_{\mu}^{\dagger}-U_{\mu}^{\dagger}(x) \eta(x)\right)
\end{gathered}
$$

ALPHA $_{s}$ from Lattice QCD: Lattice artefacts

$O(4)$ breaking: $H(4)$ discretization artefacts ${ }^{8}$

Orbit labeled by $H(4)$-invariants: $p^{[2 n]}=\sum_{\mu=1}^{4} p_{\mu}^{2 n}, n=1,2,3$
Momentum on the lattice: $\tilde{p}_{\mu}=\frac{1}{a} \sin a p_{\mu}, p_{\mu}=\frac{2 \pi n}{N a} \quad n=0,1, \cdots, N$

$$
a^{2} \tilde{p}^{2} \equiv \sum_{\mu=1}^{4} a^{2} \tilde{p}_{\mu}^{2}=a^{2} p^{2}+c_{1} a^{4} p^{[4]}+\cdots=a^{2} p^{2}\left(1+c_{1} a^{2} \frac{p^{[4]}}{p^{2}}+\cdots\right)
$$

ALPHA $_{s}$ from Lattice QCD: Lattice artefacts

$O(4)$ breaking: $H(4)$ discretization artefacts ${ }^{8}$

Orbit labeled by $H(4)$-invariants: $p^{[2 n]}=\sum_{\mu=1}^{4} p_{\mu}^{2 n}, n=1,2,3$
Momentum on the lattice: $\tilde{p}_{\mu}=\frac{1}{a} \sin a p_{\mu}, p_{\mu}=\frac{2 \pi n}{N a} \quad n=0,1, \cdots, N$

$$
a^{2} \tilde{p}^{2} \equiv \sum_{\mu=1}^{4} a^{2} \tilde{p}_{\mu}^{2}=a^{2} p^{2}+c_{1} a^{4} p^{[4]}+\cdots=a^{2} p^{2}\left(1+c_{1} a^{2} \frac{p^{[4]}}{p^{2}}+\cdots\right)
$$

$$
\begin{aligned}
& \text { If } \epsilon=a^{2} p^{[4]} / p^{2} \ll 1 \ldots \\
& \begin{aligned}
& Q\left(a^{2} \tilde{p}_{\mu}^{2}, a^{2} \Lambda^{2}\right) \equiv Q\left(a^{2} p^{2}\left(1+c_{1} a^{2} \frac{p^{[4]}}{p^{2}}+\cdots\right), a^{2} \Lambda^{2}\right) \\
&=Q\left(a^{2} p^{2}, a^{2} \Lambda^{2}\right)+\left.\frac{d Q}{d \epsilon}\right|_{\epsilon=0} a^{2} \frac{p^{[4]}}{p^{2}}+\cdots
\end{aligned}
\end{aligned}
$$

ALPHA $_{\text {s }}$ from Lattice QCD:

Lattice artefacts

$O(4)$ breaking: $H(4)$ discretization artefacts ${ }^{8}$

Orbit labeled by $H(4)$-invariants: $p^{[2 n]}=\sum_{\mu=1}^{4} p_{\mu}^{2 n}, n=1,2,3$
Momentum on the lattice: $\tilde{p}_{\mu}=\frac{1}{a} \sin a p_{\mu}, p_{\mu}=\frac{2 \pi n}{N a} \quad n=0,1, \cdots, N$

$$
a^{2} \tilde{p}^{2} \equiv \sum_{\mu=1}^{4} a^{2} \tilde{p}_{\mu}^{2}=a^{2} p^{2}+c_{1} a^{4} p^{[4]}+\cdots=a^{2} p^{2}\left(1+c_{1} a^{2} \frac{p^{[4]}}{p^{2}}+\cdots\right)
$$

$$
\text { If } \epsilon=a^{2} p^{[4]} / p^{2} \ll 1 \ldots
$$

$$
\begin{aligned}
& Q\left(a^{2} \tilde{p}_{\mu}^{2}, a^{2} \Lambda^{2}\right) \equiv Q\left(a^{2} p^{2}\left(1+c_{1} a^{2} \frac{p^{[4]}}{p^{2}}+\cdots\right), a^{2} \Lambda^{2}\right) \\
& \quad=Q\left(a^{2} p^{2}, a^{2} \Lambda^{2}\right)+\frac{d Q}{d \epsilon} \int_{0} a^{2} \frac{2 p^{[4]}}{p^{2}}+\cdots
\end{aligned}
$$

ALPHA $_{\text {s }}$ from Lattice QCD:

Lattice artefacts

$O(4)$ breaking: $H(4)$ discretization artefacts ${ }^{8}$

Orbit labeled by $H(4)$-invariants: $p^{[2 n]}=\sum_{\mu=1}^{4} p_{\mu}^{2 n}, n=1,2,3$

ALPHA $_{\text {s }}$ from Lattice QCD: Lattice artefacts

Quark mass artefacts

ALPHA $_{s}$ from Lattice QCD: Lattice artefacts

Quark mass artefacts

$\mathcal{O}\left(a^{2} \mu_{q}^{2}\right)$ dependence

$$
\begin{aligned}
\widehat{\alpha}_{T}\left(a^{2} p^{2}, a^{2} \mu_{q}^{2}\right) & =\frac{g_{0}^{2}\left(a^{2}\right)}{4 \pi} \widehat{\boldsymbol{G}}\left(a^{2} p^{2}, a^{2} \mu_{q}^{2}\right) \widehat{F}^{2}\left(a^{2} p^{2}, a^{2} \mu_{q}^{2}\right) \\
& =\widehat{\alpha}_{T}\left(a^{2} p^{2}, 0\right)+\frac{\partial \widehat{\alpha}_{T}}{\partial\left(a^{2} \mu_{q}^{2}\right)}\left(a^{2} p^{2}\right) a^{2} \mu_{q}^{2}+\cdots
\end{aligned}
$$

ALPHA $_{\mathrm{s}}$ from Lattice QCD: Lattice artefacts

Quark mass artefacts

Example: $\beta=4.05$

$$
\begin{aligned}
\widehat{\alpha}_{T}\left(a^{2} p^{2}, a^{2} \mu_{q}^{2}\right) & =\frac{g_{0}^{2}\left(a^{2}\right)}{4 \pi} \widehat{G}\left(a^{2} p^{2}, a^{2} \mu_{q}^{2}\right) \widehat{F}^{2}\left(a^{2} p^{2}, a^{2} \mu_{q}^{2}\right) \\
& =\widehat{\alpha}_{T}\left(a^{2} p^{2}, 0\right)+\frac{\partial \widehat{\alpha}_{T}}{\partial\left(a^{2} \mu_{q}^{2}\right)}\left(a^{2} p^{2}\right) a^{2} \mu_{q}^{2}+\cdots
\end{aligned}
$$

ALPHA $_{s}$ from Lattice QCD:
 Lattice artefacts

Quark mass artefacts

ALPHA $_{\text {s }}$ from Lattice QCD: After curing lattice artefacts

$$
R_{0}=-92(11), \quad p \geq p_{\min } \simeq 2.8 \mathrm{GeV} \quad\left(\mathrm{a}(3.9)=0.0801(14) \mathrm{fm}^{9}\right)
$$

Requiring a plateau for $\Lambda_{\overline{M S}}$ in the window $a p \geq p_{\text {min }}$

$\beta=3.9$

$\beta=4.05$

$\beta=4.2$

ALPHA $_{s}$ from Lattice QCD: After curing lattice artefacts

Global fit and calibration of lattice spacing

$$
x^{2}\left(a\left(\beta_{0}\right) \Lambda_{\overline{M s}}, c, c, \frac{a\left(\beta_{1}\right)}{a\left(\beta_{0}\right)}, \frac{a\left(\beta_{2}\right)}{a\left(\beta_{0}\right)}\right)=\sum_{j=0}^{2} \sum_{i} \frac{\left(\Lambda_{i}\left(\beta_{j}\right)-\frac{a\left(\beta_{j}\right)}{a\left(\beta_{0}\right)}\right)}{\delta^{2}\left(\Lambda_{i}\right)}
$$

Variables: $a\left(\beta_{0}\right) \Lambda_{\overline{\mathrm{MS}}}, c, \frac{a\left(\beta_{1}\right)}{a\left(\beta_{0}\right)}, \frac{a\left(\beta_{2}\right)}{a\left(\beta_{0}\right)}$

ALPHA $_{s}$ from Lattice QCD:

After curing lattice artefacts

Global fit and calibration of lattice spacing

$$
\chi^{2}\left(a\left(\beta_{0}\right) \Lambda_{\overline{\mathrm{MS}}}, c, \frac{a\left(\beta_{1}\right)}{a\left(\beta_{0}\right)}, \frac{a\left(\beta_{2}\right)}{a\left(\beta_{0}\right)}\right)=\sum_{j=0}^{2} \sum_{i} \frac{\left(\Lambda_{i}\left(\beta_{j}\right)-\frac{a\left(\beta_{j}\right)}{a\left(\beta_{0}\right)} a\left(\beta_{0}\right) \Lambda_{\overline{\mathrm{MS}}}\right)^{2}}{\delta^{2}\left(\Lambda_{i}\right)}
$$

Variables: $a\left(\beta_{0}\right) \Lambda_{\overline{\mathrm{MS}}}, c, \frac{a\left(\beta_{1}\right)}{a\left(\beta_{0}\right)}, \frac{a\left(\beta_{2}\right)}{a\left(\beta_{0}\right)}$

	This paper	String tension 10
$a(3.9) / a(4.05)$	$1.224(23)$	$1.255(42)$
$a(3.9) / a(4.2)$	$1.510(32)$	$1.558(52)$
$a(4.05) / a(4.2)$	$1.233(25)$	$1.241(39)$
$\Lambda_{\overline{\mathrm{MS}}} a(3.9)$	$0.134(7)$	
$g^{2}\left\langle A^{2}\right\rangle a^{2}(3.9)$	$0.70(23)$	

ALPHA $_{s}$ from Lattice QCD:

After curing lattice artefacts

Global fit and calibration of lattice spacing

$$
x^{2}\left(a\left(\beta_{0}\right) \Lambda_{\overline{M s}}, c, c, \frac{a\left(\beta_{1}\right)}{a\left(\beta_{0}\right)}, \frac{a\left(\beta_{2}\right)}{a\left(\beta_{0}\right)}\right)=\sum_{j=0}^{2} \sum_{i} \frac{\left.\left(\Lambda_{i}\left(\beta_{j}\right)-\frac{a\left(\beta_{j}\right)}{a\left(\beta_{0}\right)}\right)^{2}\left(\beta_{0}\right) \Lambda_{\overline{M s}}\right)^{2}}{\delta^{2}\left(\Lambda_{i}\right)}
$$

Variables: $a\left(\beta_{0}\right) \Lambda_{\overline{\mathrm{MS}}}, c, \frac{a\left(\beta_{1}\right)}{a\left(\beta_{0}\right)}, \frac{a\left(\beta_{2}\right)}{a\left(\beta_{0}\right)}$

\bullet ••)		
$a(3.9) / a(4.05)$	$1.224(23)$	$1.255(42)$
$a(3.9) / a(4.2)$	$1.510(32)$	$1.558(52)$
$a(4.05) / a(4.2)$	$1.233(25)$	$1.241(39)$
$\Lambda_{\overline{\mathrm{MS}}} a(3.9)$	$0.134(7)$	
$g^{2}\left\langle A^{2}\right\rangle a^{2}(3.9)$	$0.70(23)$	

ALPHA $_{\mathrm{s}}$ from Lattice QCD: Systematic deviations

Higher orders for Wilson coefficient...

	One loop	Two loops	Three loops	Four loops
$\Lambda_{\overline{\mathrm{MS}}} a(3.9)$	$0.134(7)$	$0.136(7)$	$0.137(7)$	$0.138(7)$
$g^{2}\left\langle A^{2}\right\rangle a^{2}(3.9)$	$0.70(23)$	$0.52(18)$	$0.44(14)$	$0.39(14)$

Three-loop versus four-loop perturbative coupling constant...

	Four loops	Three loops
$a(3.9) / a(4.05)$	$1.224(23)$	$1.229(23)$
$a(3.9) / a(4.2)$	$1.510(32)$	$1.510(29)$
$a(4.05) / a(4.2)$	$1.233(26)$	$1.234(25)$
$\Lambda_{\overline{\mathrm{MS}}} a(3.9)$	$0.134(7)$	$0.125(6)$
$g^{2}\left\langle A^{2}\right\rangle a^{2}(3.9)$	$0.70(23)$	$0.80(20)$

Higer orders in OPE...unstable!

$$
\alpha_{T, P 4}\left(\mu^{2}\right)=\alpha_{T}\left(\mu^{2}\right)+\frac{c_{4}}{\mu^{4}}
$$

ALPHA $_{\mathrm{s}}$ from Lattice QCD: Conclusions

ALPHA $_{s}$ from Lattice QCD: Conclusions

ALPHA $_{s}$ from Lattice QCD: Conclusions

Conclusions

$N_{f}=2$:

$$
\begin{aligned}
\Lambda_{\overline{\mathrm{MS}}} & =\left(330 \pm 23 \pm 22_{-33}\right) \mathrm{MeV} \\
g^{2}\left(q_{0}^{2}\right)\left\langle A^{2}\right\rangle_{q_{0}} & =\left(4.2 \pm 1.5 \pm 0.7^{+?}\right) \mathrm{GeV}^{2}, \quad q_{0} \sim 10 \mathrm{GeV}
\end{aligned}
$$

$N_{f}=0:$

$$
\begin{aligned}
\Lambda_{\overline{\mathrm{MS}}} & =224_{-5}^{+8} \mathrm{Mev} \\
g_{T}^{2}\left\langle A^{2}\right\rangle & =5.1_{-1.1}^{+0.7} \mathrm{Gev}^{2}
\end{aligned}
$$

ALPHA $_{\text {s }}$ from Lattice QCD: Conclusions

Conclusions

$N_{f}=2$:

$$
\begin{aligned}
\Lambda_{\overline{\mathrm{MS}}} & =\left(330 \pm 23 \pm 22_{-33}\right) \mathrm{MeV} \\
g^{2}\left(q_{0}^{2}\right)\left\langle A^{2}\right\rangle_{q_{0}} & =\left(4.2 \pm 1.5 \pm 0.7^{+?}\right) \mathrm{GeV}^{2}, q_{0} \sim 10 \mathrm{GeV}
\end{aligned}
$$

$N_{f}=0:$

$$
\begin{aligned}
\Lambda_{\overline{\mathrm{MS}}} & =224_{-5}^{+8} \mathrm{Mev} \\
g_{T}^{2}\left\langle A^{2}\right\rangle & =5.1_{-1.1}^{+0.7} \mathrm{Gev}^{2}
\end{aligned}
$$

Outlooks

ETMC new configurations:

$$
\begin{aligned}
& N_{f}=4 \\
& N_{f}=2+1+1
\end{aligned}
$$

ALPHA $_{\mathrm{s}}$ from Lattice QCD: Conclusions

Conclusions
 $N_{f}=2$:

$$
\begin{aligned}
\Lambda_{\overline{\mathrm{MS}}} & =\left(330 \pm 23 \pm 22_{-33}\right) \mathrm{MeV} \\
g^{2}\left(q_{0}^{2}\right)\left\langle A^{2}\right\rangle_{q_{0}} & =\left(4.2 \pm 1.5+0.7^{+?}\right) \mathrm{GeV}^{2}, q_{0} \sim 10 \mathrm{GeV}
\end{aligned}
$$

$N_{f}=0$.

Thank you!!!

Outlooks

ETMC new configurations:

$$
\begin{aligned}
& N_{f}=4 \\
& N_{f}=2+1+1
\end{aligned}
$$

[^0]: K.G. Chetyrkin, Nucl. Phys. B710 (2005) 499

